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ABSTRACT
Factored representations, model-based learning, and hierar-
chies are well-studied techniques for improving the learning
efficiency of reinforcement-learning algorithms in large-scale
state spaces. We bring these three ideas together in a new al-
gorithm. Our algorithm tackles two open problems from the
reinforcement-learning literature, and provides a solution to
those problems in deterministic domains. First, it shows
how models can improve learning speed in the hierarchy-
based MaxQ framework without disrupting opportunities
for state abstraction. Second, we show how hierarchies can
augment existing factored exploration algorithms to achieve
not only low sample complexity for learning, but provably
efficient planning as well. We illustrate the resulting per-
formance gains in example domains. We prove polynomial
bounds on the computational effort needed to attain near
optimal performance within the hierarchy.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning

General Terms
Algorithms

Keywords
Reinforcement Learning, Hierarchical reinforcement learn-
ing, Factored representations, Sample complexity

1. INTRODUCTION
In the Markov decision process (MDP) formalization

of the reinforcement-learning (RL) problem (Sutton and
Barto 1998), a decision maker interacts with an MDP envi-
ronment consisting of a finite state space S and action space
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A. Transitions are controlled by a Markov function where
P (s, a, s′) = Pr(s′|s, a) is the probability of reaching state
s′ ∈ S after action a ∈ A in state s ∈ S. The decision
maker receives reward value R(s, a) for action a in state s

and attempts to maximize the expected cumulative reward.
In the current paper, we treat only MDPs with determinis-

tic transitions, meaning that for each state-action pair there
exists a unique s′ such that P (s, a, s′) = 1. We assume they
also consist of only negative rewards (R(s, a) < 0) except
for a set of final states F ⊆ S that end the process when
reached. We further assume that there are short solutions—
policies that terminate after at most T steps for some poly-
nomial size T . These conditions imply that the optimal
value function is unique. Even though we present results
only for the deterministic case, we stick with the standard
notation of MDPs used in the reinforcement-learning com-
munity, which assumes stochastic domains.

A number of reinforcement-learning algorithms have been
studied (Sutton and Barto 1998), some of which have been
shown to find optimal policies under well-understood condi-
tions. In analyzing algorithms, there are two main sources of
complexity to be considered. The first, sample complexity,
defines the amount of real-world experience needed by an al-
gorithm to achieve near optimal results. The second, compu-
tational complexity, specifies the amount of computational
work required per experience (Kakade 2003). We seek al-
gorithms with low sample and computational complexity—
both bounded by polynomials in critical parameters of the
environment.

The best known reinforcement-learning algorithm is
Q-learning. It is a sample-based learning rule with
very low computational complexity, but it provably
converges (Watkins and Dayan 1992) to the solu-
tion to the Bellman equations Q∗(s, a) = R(s, a) +
γ
P

s′ T (s, a, s′) maxa′ Q∗(s′, a′), and therefore can be used
to find optimal behavior. Unfortunately, Q-learning of-
ten exhibits very high sample complexity, making it prac-
tical principally in simulated domains in which experience
is cheap to generate. To mitigate the high sample com-
plexity of Q-learning, researchers have proposed algorithms
that strike other tradeoffs between computational and sam-
ple complexity.

DYNA (Sutton 1990) and prioritized sweeping (Moore
and Atkeson 1993) showed how learning transition mod-
els can empirically decrease sample complexity at in-
creased computational complexity. Recent work (Kearns



and Singh 2002; Brafman and Tennenholtz 2002) has shown
how model-based methods can provide formal polynomial-
time bounds on both sample and computational complexity
in MDPs.

Structure has long been recognized as important in com-
putationally efficient sequential decision making (Boutilier
et al. 1999). Dynamic Bayes Nets (DBNs) have emerged as
a popular formalism for succinctly representing and solving
large-scale MDPs (Koller and Parr 2000) and we adopt this
factored-state framework in this paper.

In addition to structure in the state space, many re-
searchers have studied algorithms that exploit hierarchical
structure in the policy space (Kaelbling 1993; Hengst 2002).
These methods have empirically provided relatively modest
improvements in sample complexity over baseline RL ap-
proaches.

Kearns and Koller (1999) showed how model-based learn-
ing can be combined with factored states to provide polyno-
mial sample-complexity bounds. An open problem from this
work is achieving a polynomial computational-complexity
bound. Dietterich (2000c) showed how factored states and
hierarchy could be combined effectively, empirically improv-
ing sample complexity and reducing the number of para-
meters to be learned. Dietterich (2000b) also recognized
the importance of combining models, factored states, and
hierarchy, but found that the resulting learned hierarchical
models no longer benefited from the factored representation.

The contribution of the current work is a novel combina-
tion of factored states, hierarchy and models, resulting in
progress towards the solution of two important open prob-
lems. First, it shows how models can be combined with hier-
archy without disrupting the benefits of factored states. The
resulting algorithm exhibits greatly reduced sample com-
plexity compared to model-free learning. Second, our combi-
nation of methods retains the polynomial sample complexity
of existing model-based methods with factored states, with
the hierarchy providing an approach to efficient planning in
the learned models. Thus, we present the first factored-
state reinforcement-learning algorithm with both polyno-
mial sample and computational complexity. Section 6 il-
lustrates our algorithm on a class of MDPs.

2. FACTORED-STATE MDPS
A factored-state MDP is one in which the state variables

are factored into independently specified components. Let
X be the set of state factors and, for all x ∈ X, D(x) is
the domain of values that factor x can take on. We write
v = Φx(s) as the value of factor x in state s.

For a factored representation to provide a representa-
tional advantage over the standard tabular MDP repre-
sentation, it is important that the transition probabilities
and rewards support a structured representation. The as-
sumption we adopt here, which generalizes the standard
DBN representation, is that the probability that a factor
x takes on a particular value v after a state transition
in action a is a function of the cluster c of the state s.1

We write K(s, a, x) as the cluster for state s and factor
x under action a and P̄ x(c, a, v) as the probability that
a state from cluster c will transition to one that has fac-
tor x equal to v, under action a. Using this notation, for

1In DBNs, the cluster is determined by the joint assignment
of the parents of x.

each action a ∈ A and factor x ∈ X, transition probabili-
ties are represented as Pr(s′|s, a) =

Q
x∈X Pr(Φx(s′)|s, a) =Q

x∈X Pr(Φx(s′)|K(s, a, x), a) =
Q

x∈X P̄ x(cx, a, v) where
v = Φx(s′) and cx = K(s, a, x).

Similarly, we assume that reward functions are specified
using the state clusters: R(s, a) =

P
x∈X R̄(cx, a) where

cx = K(s, a, x).

2.1 Factored Rmax
Rmax is a reinforcement-learning algorithm introduced by

Brafman and Tennenholtz (2002) and shown to have PAC
sample complexity by Kakade (2003) (Brafman and Tennen-
holtz showed it was PAC in a slightly different setting). Fac-
tored Rmax is the direct generalization to factored MDPs
(Guestrin et al. 2002). Factored Rmax is model based in
that it maintains a model M ′ of the underlying factored
MDP and, at each step, acts according to some optimal pol-
icy of its model. In this section, we’ll describe the model
used by Factored Rmax.

To motivate the model used by Factored Rmax, we’ll de-
scribe at a high level the main intuition of the algorithm.
Consider a fixed state factor x, action a, and cluster c (c =
K(s, a, x) for some state s). There exists an associated dis-
tribution P̄ x(c, a, ·) and reward R̄(c, a). The agent doesn’t
have access to these values, so they must be learned.

The trick behind Factored Rmax is to use the agent’s ex-
perience only when there is enough of it to ensure decent
accuracy, with high probability.

Let κ be some user-defined constant that is given to Rmax
as input at the beginning of a run. In the determinstic set-
ting κ = 1. For each distribution P̄ x(c, a, ·), Rmax main-
tains a count κa(x, v, c) of the number of times it has taken
action a from a state s for which K(s, a, x) = c and v =
Φx(s). As long as κa(x, v, c) < κ, Rmax assumes that any
transition from s under a causes state value x to become
e, an additional value added to each domain D(x). Once a
state value becomes e, a transition under any action cannot
change it from being equal to e. Additionally, the reward for
any state that has a state variable with value e is equal to
Rmax, the maximum possible reward (zero in our case). On
the first timestep such that κa(x, v, c) = κ, Rmax updates
its model to use the empirical distribution as an approxima-
tion of P̄ x(c, a, ·), and the empirical reward for R̄(c, a).

3. THE MAXQ VALUE-FUNCTION DE-
COMPOSITION

One model of a task hierarchy in an MDP is to decompose
the main task of maximizing reward en route to a terminal
state into subtasks, each with its own terminal states and
perhaps subtasks of its own.

Each task 1 ≤ i ≤ I in the hierarchy can be viewed as a
self-contained MDP with final states Fi and action set Ai.

2

Actions j ∈ Ai can be either the primitive actions of the
MDP or subtasks j > i. The root task i = 1 uses Fi = F ,
the final states of the actual MDP.

We also define Ti ∈ N, for each task i, such that for any
given set of fixed polices for subtasks Ai, there exists some
(hierarchical) policy for subtask i that terminates within Ti

steps from any abstract non-terminal state.

2We view primitive actions as tasks that don’t have a set of
final states but instead terminate after one timestep.



A hierarchical policy π = 〈π1, . . . , πI〉 is a policy for each
task i, πi : S → Ai. Policy πi is considered locally optimal if
it achieves maximum expected reward given subtask policies
πj for j > i.

If local optimality holds for all tasks, the corresponding
hierarchical policy is called recursively optimal.

3.1 Recursive Solution
The state (V ) and state-action (Q) forms of the Bell-

man equations are well known (Sutton and Barto 1998).
Dietterich (2000a) implicitly proposes an alternative—the
completion-function form:

C(s, a) =
X
s′

P (s, a, s
′) max

a′

(R(s′, a′) + C(s′, a′)).

Given a representation for the reward function, the com-
pletion function can be used to recover Q(s, a) = R(s, a) +
C(s, a), V (s) = maxa Q(s, a), and π(s) = argmaxa Q(s, a).

Given ǫ-approximate transition and reward functions P̂

and R̂ and the task hierarchy, we can compute a hierarchi-
cally ǫ-optimal policy by defining a hierarchical completion
function as follows. We consider the set of tasks i in reverse
order from i = I to i = 1. For each, we determine a com-
pletion function Ci. If i is the task for primitive action a,
we define Ci(s, a) = 0.

For higher-level tasks i, we solve the MDP with actions Ai,
states S, and final states Fi, where the transition function
for action j ∈ Ai is P j(s, s′) and its reward function is Rj(s).
In other words, each subtask j is treated like an action that
has a reward and a probabilistic transition to some state
s′ ∈ Fj . The MDP solution produces Ci. Specifically, for
s ∈ Fi we define Ci(s, j) := 0. Otherwise, we define the task
completion function as follows:

C
i(s, j) =

X
s′∈Fj

P
j(s, s′) max

j′∈Ai

(Rj′(s′) + C
i(s′, j′)).

Computing Rj(s) and P j(s, s′) can be achieved by solving
systems of linear equations: if s ∈ Fj , P j(s, s) = 1 and
Rj(s) = 0; otherwise,

P
j(s, s′) =

X
s1

P
k(s, s1)P

j(s1, s
′) and

R
j(s) = R

k(s) + C
j(s, k) (1)

where k = πj(s).
In this construction, each task adopts an optimal policy

given the subtasks, so π = 〈π1, . . . , πI〉 is a recursively opti-

mal policy for the MDP specified by P̂ and R̂.

3.2 Abstraction
Dietterich (2000c) described how to combine state ab-

straction with a hierarchical task decomposition. For each
task i, define Zi ⊆ S to be the set of abstract-state repre-
sentatives, and define an abstraction function φi : S → Zi

mapping states to their abstract representatives. An ab-
stract policy and an abstract completion function differ only
for states with different representatives.

Similar to Dietterich (2000c), we say an abstraction is
valid if the abstract completion function does not incur any
approximation under any abstract policy. Define the ab-
stract transition function P

j
i : S × Zi → R

as P
j
i (s, z

′) =
P

s′∈S s.t. φi(s′)=z′ P j(s, s′). We adopt the fol-

lowing concrete assumptions, which imply a valid abstrac-
tion:

1. For all s ∈ S, z′ ∈ Zi and j ∈ Ai, P
j
i (s, z

′) =

P
j
i (φi(s), z

′). That is, the total probability of a tran-
sition to states in an abstract class is dependent only
on the abstract class of the current state.

2. For all s, s′ ∈ S, j, k ∈ Ai, if P
j
i (s, s′) > 0, then

Rk(s′) = Rk(φi(s
′)). That is, for any reachable next

state, the reward function depends only on the ab-
stract class.

3. For all s, s′ ∈ S and k ∈ Ai, if Rk(s) 6= Rk(s′) and
φi(s) = φi(s

′), then there is no sequence of actions in
Ai that takes the agent from s to s′. That is, if two
states in the same abstract class have different reward
functions then they are not reachable from each other.

These assumptions imply a valid abstraction because the
unique solution to the abstract completion function, defined
by

C
i(z, j) =

X
z′∈Zi

P
j
i (z, z

′) max
k∈Ai

(Rk(z′) + C
i(z′

, k)) (2)

matches the completion function for all states z ∈ Zi. This
result follows from the uniqueness of the value function and
algebraic substitution using the assumptions above.

The abstract completion function can be used to com-
pute task rewards and policies as follows. First, we extend
the abstract completion function to all states in the obvious
way: C

i(s, j) = C
i(φi(s), j). Next, we can define the re-

ward function recursively by Ri(s) = R̂(s, a) if i is subtask
for primitive action a, Ri(s) = maxj∈Ai

(Rj(s) + C
i(s, j))

otherwise. Finally, these quantities can be used to define a
policy via πi(s) = argmaxj∈Ai

(Rj(s) + C
i(s, j)). Note that

these computations can be performed in polynomial time in
the size of the task hierarchy as long as results are cached
(each task should only compute its reward function once for
a state).

3.3 An Example Domain
The main MDP environment we used for testing is called

bitflip. This domain has several qualities that make it suit-
able for our tests, including an exponential and scalable state
space, an exponential set of distinct Q values, linear-size set
of completion values, and abstractions that can potentially
reduce the size by an exponential factor. For the domain
bitflip(n), meaning an instance of bitflip with n bits, the
states are all binary n-bit numbers. There are n actions,
with action flip(i) corresponding to “flip the ith bit”. The
actions don’t always succeed. In particular, if action flip(i)
is executed, the behavior depends on the bits to the left
of i (j such that j > i). If any of these bits are set to 1,
the action fails and all bits j ≥ i are set to 1. Otherwise,
the ith bit is flipped. The reward function is deterministic;
whenever action i is executed, a reward of −2i is received.
There is one final state, the state where all bits are equal to
zero. Note that V (s) = s where s is the state interpreted
as an integer in binary. Thus, there are 2n distinct V and
Q values. The optimal policy is to flip the 1 bits, in order,
from left to right.

We now describe the hierarchy for bitflip. For each i there
is a subtask, clear(i), which terminates when the leftmost



i bits are all zero. The subtasks available to clear(i) are
flip(i) and clear(i−1). The subtask clear(n) is the root task.
The abstraction function for flip(i) maps all states to four
representative states. They correspond to the combinations
of bit i being 0 or 1, and all bits to the left of i being 0 or at
least one having a 1. This abstraction is valid and results in
an abstract completion function with fewer than 8n distinct
values.

4. DSHP: A DETERMINISTIC SAMPLE-
BASED HIERARCHICAL PLANNER

Equation 2 provides an alternative formulation of the com-
pletion function based on abstraction that can result in a
considerably smaller representation at each task. Solving
for the abstract completion function C requires knowledge
of the abstract transition function P and the reward func-
tion R for each of the abstract state representatives. Un-
fortunately, the analog of Equation 1, which defines MDP
models of subtasks, can no longer be formulated in the ab-
stract setting since each task may have its own abstract state
space. In this section, we provide a method that overcomes
this hurdle in deterministic domains.

Our goal is to develop a planning algorithm that takes
as input a model M ′ of the true MDP M , and produces a
hierarchical policy. We make no assumptions on the struc-
ture of M ′ or M , for example they can be factored or flat
MDPs. We only require that given a state-action pair (s, a)
query, our model M ′ will either return the correct next state,
T (s, a) and reward R(s, a), or a special value smax, which in-
dicates the model is unsure of the behavior resulting from
action a in state s. We call such a state-action pair, which
leads to smax in the model M ′, an “unknown” state-action
pair.

Let l be the height (length of the longest root to leaf path)
of the MaxQ task hierarchy, and Li be a list of the tasks on
level i (L0 = {1}). Let Uj = maxi∈Lj

Ti be the maximum

of Ti for tasks i on level j. Define T =
Ql

j=0 Uj . With
no knowledge of the current MDP M and hierarchy H, we
cannot expect any hierarchical policy to take less than T

steps (primitive actions) to achieve its goal (whether that
be to solve the task or to reach a certain part of the state
space). In fact, we may need up to O(T · l) table lookups to
execute any such policy for T steps.

At each step, the agent must ensure that it is either exe-
cuting a recursively near-optimal policy, or it learning some-
thing new. Then the goal of the algorithm is to compute a
hierarchical policy πM′ that satisfies one of the following two
conditions:

1. The policy πM′ is recursively optimal in M .

2. By following policy πM′ for T steps in M , the agent
will reach an “unknown” state-action pair (a transition
to smax in M ′).

The algorithm solves the abstract MDP for the root task.
Since doing so requires that the children of the root task
have fixed policies, the algorithm first recursively calls itself
for each of the root’s children (thereby solving them and
fixing optimal policies).

One problem with this approach is that the algorithm
doesn’t have access to the MDP M , but instead a model
M ′. Thus, for two states s, s′ in the same cluster for task i

(meaning φi(s) = φi(s
′)), it may be the case that execution

of the same abstract action may take one of these states to
smax (in M ′) but not the other.

Our solution is to solve the MDP in a bottom-up fash-
ion, solving higher level tasks after all lower level subtasks
have been solved and to maintain a partially learned recur-
sively optimal policy. In addition, we perform value updates
on only those abstract state-action pairs for abstract states
that are reachable from the current state. For each task i

and for each reachable abstract state z ∈ Zi, we keep track
of the relevant primitive state s, such that φi(s) = z, that
will be reached if the current learned (partial) policy is per-
formed (from the current state). To do so, we postpone the
evaluation of abstract state z′ ∈ Zi until a path from the
current state is found to z′, making it vital to know the
value of z′. When z′ is found, we have the precise primitive
state (which abstracts to z′) that would be reached on this
path. If it is ever the case that a path p to smax is found,
the algorithm immediately halts and returns the policy that
generates p. Otherwise, the entire MDP is solved and a
recursively optimal policy is found.

Pseudocode for the algorithm is presented below. The
core recursive procedure is Solve. The RunTrajectory rou-
tine executes an abstract action from a primitive state in
the MDP M ′ and returns the resulting state and reward.

To simplify the exposition, we assume that every abstract
state for subtask i is reachable from every other abstract
state for subtask i in Ti steps. We also assume that terminal
states of M cannot be reached by any hierarchical policy
unless that hierarchical policy also terminates (meaning the
root reaches a terminal abstract state). Elimination of these
assumptions is straightforward.

4.1 Data Structures
Let H be the set of all tasks in the hierarchy, Z be the

set of all abstract states, and A be the set of all abstract
actions.

The model M ′ is a generative model and can be accessed
via the two following functions:

• NextState : S ×A→ S ∪ {smax},

• Reward : S ×A→ R ∪ {∅}.

The model of the hierarchy consists of:

• Solved : H → {True, False} : Indicates whether we
have solved the task or not. Initialized to Solved(·) =
False.

• HAction : H × Z → A : represents the learned hierar-
chical policy by giving the next abstract action to take
from the given task and abstract state.

• HNextState : H × Z × A → Z : Returns the next
abstract state reached by executing the given abstract
action in the given task and abstract state.

• HReward : H × Z ×A → R : Returns reward obtained
by executing the given abstract action in the given task
and abstract state.

• HValue : H × Z → R : Returns the total value of the
hierarchical policy starting in the given task from the
given abstract state.



The input to the algorithm is the model MDP M ′, the hi-
erarchy H, and the current state s. The output of the algo-
rithm will be a hierarchical policy πM′ .

4.2 Routines
The planning algorithm consists of the following four rou-

tines: Main, Solve, RunTrajectory, HValueIteration.

Main()

1: Set up data structures
2: Call Solve(1, s)
3: Output policy represented by HAction.

Solve(i, s)

Input : i ∈ H, s ∈ S

Output : foundSmax ∈ {True, False}

1: Let Q be the trajectory tree created with root (s, φi(s))
2: KNOWN = {}
3: for each node N = (s′, z′ := φi(s

′)) in Q do
4: for each action aij ∈ Ai do
5: if aij is not primitive and Solved(aij) = F then
6: Call foundSmax = Solve(aij, s

′)
7: if foundSmax then
8: Set HAction to reach aij from root in Q.
9: return True and HALT

10: end if
11: end if
12: (s′′, r)← RunTrajectory(aij, s

′)
13: if s′′ = smax then
14: Goto line 8
15: end if
16: HNextState(i, z′, aij)← φi(s

′′)
17: HReward(i, z′, aij)← r

18: if φi(s
′′) 6∈ KNOWN then

19: Add node (s′′, φi(s
′′)) to Q as child to N

20: end if
21: end for
22: KNOWN = KNOWN ∪ {z′}
23: end for
24: Call HValueIteration(i)
25: Solved(i)← True

26: Return False and HALT

RunTrajectory(i, s)

Input : i ∈ H, s ∈ S

Output : (s′, r) ∈ S× R

1: if Task i is a leaf task then
2: s′ ← NextState(s, HAction(i, φi(s)))
3: r← Reward(s, HAction(i))
4: return (s′, r) and HALT

5: else
6: Rtotal ← 0

7: (stemp, rtemp)← RunTrajectory(HAction(i, φi(s)), s)
8: Rtotal ← Rtotal + rtemp
9: if stemp ∈ Fi∪{smax} (stemp is a terminal state) then

10: return (stemp, Rtotal) and HALT

11: else
12: s← stemp
13: goto line 7
14: end if
15: end if

HValueIteration(i)

Input : i ∈ H

Output : updated values

This algorithm simply runs value iteration on the abstract
state space Zi. It uses the functions HNextState(i, ·, ·) and
HReward(i, ·, ·), which have already been learned. It then
learns the function HValue(i, ·) and uses it to compute some
optimal policy, which it stores in HAction(i, ·).

4.3 Correctness of Algorithm
The Solve routine when called with a leaf task (one

with only primitive actions), will clearly make no recur-
sive calls. In this case, for each abstract state and action,
RunTrajectory is used to learn the transition and reward
function. If, during any call to RunTrajectory, a path to
smax is found the function ends and returns a policy leading
to smax. Otherwise, value iteration is used to completely
solve the abstract MDP.

If Solve(i, s) is called with a task i that has non-primitive
actions (actions that are other tasks), then the correctness
follows from a similar argument to the one above. The only
difference is that, for each non-primitive action (from each
abstract state), a recursive call to Solve is made. However,
as the tasks called recursively exist below (as the children
of) i, we can inductively assume these calls either return F,
and have learned optimal policies for the subtask, or they
return T and have learned a policy to reach smax from s.

4.4 Analysis of DSHP
Our claim is that the runtime of DSHP is polynomial in

the relevant input quantities of the reinforcement-learning
problem. Specifically, let V I(i) be the time it takes to
run value iteration for task i, then DSHP runs in time
O(
PI

i=1 (|Zi| · |Ai| · T + V I(i))). To see this result, note
that:

• Besides the initial call of Solve within Main, the only
other calls to Solve are recursive.

• A call to Solve(i, ·) will only make recursive calls
Solve(j, ·) where task j is below task i in the MaxQ
task hierarchy.

• When Solve(i, ·) completes (without returning True,
which halts the entire algorithm), we have that
Solved(i) = True.

• Thus, for any task i, Solve(i, ·) will never be called
more than once during the entire algorithm. There-
fore, the number of calls to Solve cannot be greater
than I, the number of tasks.

• A single call to Solve(i, ·) has two main iterations,
the outer for loop of Line 3 and the inner for loop
of Line 4. Due to the if statement of Line 18, the
outer for loop will iterate at most |Zi| times, while
the inner for loop clearly iterates Ai times. The com-
putation that takes place within the inner for loop,
not counting the computation within other calls to
Solve (which we have already counted), is a constant
plus the time it takes to call RunTrajectory, which
happens to be O(T ). After the two loops terminate,
Solve(i, ·) calls HValueIteration, which takes time
V I(i). Thus, the total complexity of entire algorithm



is O(
PI

i=1 (|Zi| · |Ai| · T + V I(i))). We can make
this bound tighter by noting that RunTrajectory(i, ·)
takes less time as the depth in the tree of i increases.

5. USING DSHP TO LEARN AN MDP
Given a solution to the planning problem of Section 4, the

learning algorithm is simple: Use experience to generate M ′,
then plan. If DSHP outputs a hierarchical-optimal policy
we’re done. Otherwise, run the policy until an “unknown”
(s, a) is found and repeat. It’s clear that the learning al-
gorithm, which we call the Deterministic Sample-Based
Hierarchical Learner (DSHL) will have sample complex-
ity bounded by O(T ·U(M)), with U(M) being the number of
“unknown” state-actions that can be found, until the model
M ′ is identical to M . For a flat and deterministic MDP
M , U(M) = |S| · |A|. In factored representations, U(M) is
often much smaller. By separating the hierarchy from the
underlying representation, DSHL reaps the benefits of both
forms of abstraction simultaneously.

6. EMPIRICAL RESULTS
We tested MaxQ, Factored Rmax and DSHL in the bitflip

and the taxi domain ((Dietterich 2000c)). The results show
that, as expected, Rmax has poor computational complex-
ity and MaxQ has poor sample complexity. DSHL achieves
both low computational and sample complexity.

6.1 Bitflip domain
Our testing methodology was to evaluate the agent’s learned

policy after each episode on a number of example states of
the environment. The evaluation states were picked to fol-
low a standard structure based on the number of bits n:
all 1s (11..11), single 1 in the center (0..010..0), first half 1s
(1..10..0), second half 1s (0..01..1), by quarters (1.10.01.10.0)
and alternating 1s (101010...). Once an optimal policy is
found, the trial stops and we record the cost (number of
action choices) and computer time for the trial. Each ex-
periment is repeated for 20 trials and all the results are
averaged. We tested each algorithm on bitflip(n), where we
allowed n to increase until one of two termination conditions
were satisfied: when a value of n is reached for which the al-
gorithm took longer than thirty minutes on a single trial, or
when the number of action choices reached thirty thousand.

Each algorithm has a number of parameters. For Factored
Rmax, the main parameter is the Rmax constant κ. As we
are dealing with a deterministic domain, this parameter was
set to 1. For MaxQ, one must specify the value of ǫ for
exploration and its decay rate. We did a search of these
parameters (from 0.1 to 0.3, on 0.05 increments) and chose
the setting that gave the best performance for each problem
size. DSHL requires no parameter tuning.

As we can see from the Figure 1, the sample complex-
ity of both Factored Rmax and DSHL grows linearly in the
number of factors of the domain, whereas the sample com-
plexity of MaxQ grows exponentially. On the other hand,
the computational cost for Factored Rmax grows exponen-
tially (Figure 2), while both MaxQ and DSHL show polyno-
mial growth rates. So, DSHL is the only algorithm to show
polynomial growth rates in both sample and computational
complexities, as predicted by our analyses.
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Figure 1: Number of steps per problem size until
algorithm reaches optimal policy for the given start
states. Rmax can only solve problems upto size 10,
given the amount of time allocated.
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Figure 2: Computational time per step, per problem
size. Plotted on a log scale, due to huge disparity
between algorithms.



6.2 Taxi domain
We used a similar testing methodology for the taxi do-

main described by Dietterich (2000c). We used the stan-
dard problem (no fuel, no fickle passenger) on a 5x5 grid.
We used the same hierarchical structure and the same kind
of abstractions used by MaxQ. The size of the problem in
this case is fixed, so we only expose the good performance
of DSHL in the two types of complexities.

As in the previous problem, we evaluate the agent’s learned
policy after each episode on a set of six starting combina-
tions of <taxi (x,y) location, passenger location, passen-
ger destination>. The start states used were: {(2, 2), Y, R},
{(2, 2), Y, G}, {(2, 2), Y, B}, {(2, 2), R, B}, {(0, 4), Y, R},
{(0, 3), B, G}.

The results are shown in the following table:

Number of steps Time per step
MaxQ 6298 9.570ms
Factored Rmax 1839 97.780ms
DSHL 319 16.876ms

As can be seen, DSHL significantly improves the sample
complexity of both MaxQ and Factored Rmax by combin-
ing models, factored state spaces and a hierarchal structure,
while attaining low computational complexity comparable
to that of MaxQ.

7. CONCLUSION
We have designed a novel algorithm that combines fac-

tored representations, model-based learning, and hierarchies
to provide a formal guarantee on learning time in many large
deterministic reinforcement-learning domains. Empirical re-
sults indicate that, for a simple extensible class of MDPs,
existing algorithms fail to provide either efficient sample
complexity or efficient computational complexity. The re-
sults demonstrate, on the other hand, how the theoretical
assurances of our hybrid algorithm translate to practical ad-
vantages.
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