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Seventy-three children between 6 and 7 years of age were presented with a problem having

ambiguous subgoal ordering. Performance in this task showed reliable fingerprints: 1) a non-

monotonic dependence of performance as a function of the distance between the beginning

and the end-states of the problem, 2) very high levels of performance when the first move was

correct and 3) states in which accuracy of the first move was significantly below chance. These

features are consistent with a non-Markov planning agent, with an inherently inertial decision

process, and that uses heuristics and partial problem knowledge to plan its actions. We applied

a statistical framework to fit and test the quality of a proposed planning model (Monte-Carlo

Tree Search (MCTS)). Our framework allows us to parse out independent contributions to

problem-solving based on the construction of the value function and on general mechanisms

of the search process in the tree of solutions. We show that the latter are correlated with chil-

dren’s performance on an independent measure of planning, while the former is highly domain

specific.
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1 Introduction

Preschoolers are endowed with a general repertoire of

problem-solving methods that only shows a modest change

with age (Klahr & Robinson, 1981; McCormack & Atance,

2011). This is true even in games in which subgoals are diffi-

cult to parse (Klahr, 1985), refuting Piaget’s view that with-

out evident subgoals children would simply move randomly

(Piaget, 1976).

To infer the repertoire of children’s problem solving re-

sources, Klahr and collaborators (Klahr, 1985) analyzed the

trajectories of children’s play in the state-space graph of a

variant of an N-puzzle which he called the Dog-Cat-Mouse

game (DCM) (Fig. 1). In this graph, nodes indicate game

board positions and links represent legal moves between

them. Trajectories could not be accounted for by a random-

walker (an instantiation of Piaget’s view of children moving

haphazardly). Instead, the variance in the data was better

accounted for by a walker that 1) avoids moving to the pre-

viously visited state (backup), 2) displays greediness (even

when it is not optimal) and 3) is able to foresee the goal

within a relatively short horizon of about two or three moves.

These are forms of weak methods which lead to seemingly

intelligent behavior in unknown domains (Newell, Shaw, &

Simon, 1959; Pearl, 1984). In this work we revisit Klahr’s

ideas with three main novel objectives:

First, to examine the dynamics of children’s performance

(McCormack & Atance, 2011) throughout several sessions

of play.

Second, to investigate whether children’s performance can

be described as a stochastic planner with partial knowledge

of the game and infer the elements of planning (value func-

tion, search depth, stochasticity, backup avoidance).

Third, to identify which of the parameters of a model cal-

culated for each child are predictive of the child’s perfor-

mance in a different planning game.

1.1 The Game

The data were collected during an experiment where a to-

tal of 73 low Socioeconomic Status (SES) children, 6-to-7

years old, played three different computer games during 27

non-consecutive school days (Goldin et al., 2014). Here we

focus on one of the games played during this intervention; a

variant of the DCM game introduced by Klahr (Klahr, 1985).

This variant consists of three characters (a boy, a girl and a

cat) and their corresponding homes (see Fig. 1 upper pan-

els). The characters can only be moved along the paths into

empty spaces, one at a time. A problem is defined by the dis-

tribution of characters in the places in the initial state. The

goal of each game iteration is to move every character to its

corresponding place. A detailed explanation can be found in

Goldin et al 2013 (Goldin et al., 2013).

In the state-space graph, each game configuration is repre-

sented by a node. Links between nodes denote the existence

of a legal move connecting the two represented states (Fig.

1). From this representation one can easily define a distance

between any two given states as the minimal path between

the two states, which corresponds to the minimal number

of moves required to go from one state to the other. This

state-space graph reflects the existence of two types of moves

which were noted in Klahr’s original study (Klahr, 1985): 1)

rotations around the graph rings, which in the game corre-

spond to actions that move the characters through the periph-

eral ladders (Fig. 1) and 2) permutations, which link two

states of different rings, corresponding to actions that move

the characters through the diagonal ladder. This represen-

tation also reveals two classes of nodes: 1) Those in which

only rotations are possible (the two houses of the diagonal

are occupied) and 2) those in which there are three possible

moves, two rotations and one permutation (a location in the

diagonal is unoccupied).

A very important aspect of this game (and, more gener-

ally, of all games which can be represented by a state-space

graph) is that it has Markov transitions. This means that the

consequence of actions are insensitive to the history of the

game and only depend on the current state.

1.2 Analytic Strategy

The main objective of this work is to infer, from the dis-

tribution of trajectories in the state-space, the interaction be-

tween the two constituents of the planning process: the ex-

pected value assigned to each state and the search procedure

that determines how states are sampled. To quantitatively

asses these issues, we implement a computational model of

planning and probe its ability to fit children’s behavioral data.

We first analyze the performance of an Artificial Intel-

ligence (AI) agent that uses a Monte Carlo Tree Search

(MCTS) planning algorithm to select its moves. In the DCM

game, the effects of making a move are deterministic and the

game is fully-observable, as opposed to a partially observ-

able game in which the player has incomplete information of

the game’s state, and usually many possible states can corre-

spond to the available information. Thus in a fully observ-

able game, the player can uniquely identify any state with

the observed information. These imply that we can represent

the agent as facing a Markov Decision Process (MDP) (Put-

erman, 1994). The game’s state-graph defines the environ-

ment’s possible states S and the legal moves are the available

actions A(s) which change the state of the game from the

original s to a different s′. It is important to emphasize that

Abbreviations: Temporal Difference (TD), Reinforcement

Learning (RL), Monte-Carlo Tree Search (MCTS), Socioeconomic

Status (SES), Dog-Cat-Mouse game (DCM), Markov Decision Pro-

cess (MDP), Artificial Intelligence (AI), Degrees of Freedom (d f )
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an agent can act in a non-Markov manner (choosing actions

based on the history of its moves) even if the environment has

Markov transitions. In fact, this will turn out to be a major

finding of our analysis.

In the next section we implement a planning model which

describes children’s performance as a stochastic search in the

tree of possible moves. The different branches of the decision

tree are not explored homogeneously. Instead, the planner

opts with higher probability to explore branches that start in

high valued states. This model is only meaningful if four

observations are satisfied in children’s behavioral data:

I. Children must know the dynamics of the game (i.e.

transitions between game states). This is not true for

all planning problems, where the effects of actions

made by an agent may vary due to many factors (e.g.

environment randomness, an opponent that executes

an action that affects the problem’s state, etc). Super-

vising adults that accompanied each child while they

played the game verified that children in fact under-

stood the actions of the game (Sec. 2.2).

II. Children’s performance in DCM must be stationary,

i.e. not vary considerably with increasing number of

trials (analyzed in Sec. 3.1). If this were not the case,

the parameters of the planner should also vary during

the game through a learning mechanism.

III. Children’s behavior has to vary from trial to trial and

they must not select deterministically the same se-

quence of moves when starting from a given state (dis-

cussed in Sec. 3.2).

IV. Children’s behavior must not be purely random (ana-

lyzed in Sec. 3.2).

All the above features are observed in children’s data as spec-

ified in the mentioned sections.

In addition to these observations, our model has a set of

general assumptions:

• Children don’t consider all possible sequences of

moves before acting. Hence, we assume they do a form

of approximate planning

• The possible sequences of moves that children analyze

while planning must be a small sample from the space

of all sequences.

• In order to sample a small number of possible se-

quences and perform well, the sampling mechanism

must be biased toward what children interpret as the

most “promising” moves.

Based on these assumptions, the model which we imple-

ment can be used to examine the following set of hypotheses:

A. The stochastic search has a shallow depth of 2 moves

(Klahr, 1985) (Sec. 3.3).

B. The search process is influenced by the previous

moves taken (Sec. 3.2 and 3.3).

C. Planning parameters related to search resources should

transfer to different problems. However, the quality

of value estimates, which are expected to be domain

specific predictors of performance in the game, should

show no transfer to different problems.

2 Methods

2.1 Children’s behavioral data

The corpus of data we used comes from a large-scale

school intervention (Goldin et al., 2014, 2013; Lopez-

Rosenfeld, Goldin, Lipina, Sigman, & Slezak, 2013). This

study is based on data obtained from a school intervention

performed in 2010 (Goldin et al., 2014). A total of 111 low

SES 6-to-7-year-old children (62 males) participated in the

study. All participants were recruited from five classrooms

in two schools of the City of Buenos Aires, Argentina, during

the second semester of their first year at school.

The intervention involved three stages. In the first stage,

children performed a battery of cognitive tests, which in-

cluded a physical (without using computers) implementation

of Tower of London (ToL). In the second stage, children were

divided into a control (38 individuals) and experimental (73

individuals) group. The control group played three games

which were less cognitively demanding, while the experi-

mental group performed three games that were designed to

exercise memory, inhibitory control and planning. In the

third stage, children repeated the battery of cognitive tests

they had done in the first stage. All the training and test-

ing procedures were conducted by the investigators inside

the schools, in rooms appropriate for these purposes. Chil-

dren’s caregivers gave written consent to participate in the

study, which was previously authorized by the Institutional

Ethical Committee (CEMIC-CONICET). In each classroom

children were balanced for gender and randomly divided into

experimental and control groups.

The intervention involved a total of 27 nonconsecutive

school-day sessions of 15-to-20 minutes of training on three

different computer games, one of which was the variant of

the DCM game presented in section 1.1. At most three ex-

perimental sessions were conducted every week. Children

played three sessions of each game and then changed to a

different one. That is, if children played the DCM game

on Monday, Wednesday and Friday, the following Monday

they would play a different game and after three sessions they

would play the third one. After 9 sessions they would play

the DCM again. Due to absenteeism and school issues, not

every child completed the 27 sessions. On average, children
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played 24 ± 1 sessions. The battery of cognitive tests was

administered one week before and after the training.

This intervention resulted in a vast set of data. One of it’s

specific objectives - which was addressed elsewhere (Goldin

et al., 2014, 2013) - was to measure whether playing these

games had an impact on children’s school performance. Here

we capitalize on the dataset generated on children’s play in

the DCM game to infer planning mechanisms. We also use

the fact that children played another planning game (ToL)

to compare performance in this game to parameters of the

model identified for each child for the DCM game.

2.2 Dog-Cat-Mouse data

Before beginning to play the DCM game children were

instructed to move each character to its home according to

three rules: the characters have to be moved one at a time and

to an empty place (this is called a “move”), they can only be

moved through the bridges, and they cannot share a house.

They were also told not to rush since speed was not neces-

sary to win. The game is implemented in Javascript and an

updated version can be found at http://www.matemarote.

com.ar/. To move a character, children click on it, then drag

and drop it to the new position. If the drop is made outside of

a house or if the children come back to the original position

the action is not counted as a move. In all sessions, every

child played accompanied by an adult who was there to ex-

plain the rules (the first time) or remind them of the rules

(whenever necessary), and to support the child if needed (for

instance, some children need somebody to tell them that they

play well and that it is part of the game if they lose). All

experimenters gave the same instructions every time they ex-

plained the rules. Each supervising adult noted that the chil-

dren had understood the rules perfectly after less than three

trials. In particular, children fully understood the correspon-

dence between their actions (movements of the mouse) and

consequences in the game (displacements of a character).

This justifies the use of a model that does not have to actively

learn the transitions between states to attempt to account for

children’s behavior (as stated in condition I enumerated in

Sec. 1.2).

Children played the game in a sequence of four phases. In

each phase, the game trial was counted as correct when chil-

dren moved all the characters to their homes. Additionally,

in all phases except phase 4, children were told the minimum

amount of moves it took to solve the puzzle.

In phase 1, children received positive feedback when they

moved all the characters to their home even if they did so

in more than the minimum number of moves necessary. In-

stead, in phases 2, 3 and 4, children were told that they would

lose if they did not solve the puzzle in the minimum number

of moves and received negative feedback if they performed

the minimum number of moves necessary to win and hadn’t

solved the puzzle (i.e. they were forced to solve each puzzle

in the minimum amount of moves or else they lost on that

trial).

In phases 1 and 2, children first played a trial in which the

initial configuration could be solved in 2 moves. After the

children won 3 consecutive trials, the distance of the initial

configuration from the goal was increased by one move. This

was iterated until children played three consecutive trials cor-

rectly at the maximal distance, after which they moved to the

subsequent phase.

In phase 3, the distance of the initial configuration was

randomized. Children advanced to the next phase after com-

pleting 6 checkpoints. They advanced one checkpoint after

correctly solving three consecutive trials.

Phase 4 proceeded as phase 3 with the only difference be-

ing that children weren’t told the minimum number of moves

necessary to win the trial. Children played the phase 4 re-

peatedly until the end of the intervention (i.e. children did

not go back to previous phases regardless of the number of

errors made).

For the analysis of performance shown in (Fig. 2) we con-

sidered trials to be correctly solved only if they were done in

the minimal number of moves.

2.3 Planning algorithm

For a given problem (for example, an instance of the DCM

game), a planning algorithm identifies a sequence of actions

that lead to a goal state or, more generally, maximize cu-

mulative reward (Russell & Norvig, 1995). Classic plan-

ning algorithms achieve this by performing forward-search

through the state space of the problem. This is done em-

ploying a recursive method that expands a tree of possible

output states from the starting “root” state. When the size of

the state space is too large, exhaustive search becomes un-

feasible. One way of dealing with this computational barrier

is to sample trajectories through the state space instead of

exploring it fully, ideally using a sampling strategy that is

biased towards the most promising parts of the search space.

Monte Carlo Tree Search (MCTS) is a family of algorithms

that employ such a strategy.

This search method guides the selection of one branch

over the other using a value that ranks the states. A possi-

ble definition of the value of a state is the one used in the

Markov Decision Process (MDP) framework and in Rein-

forcement Learning (RL) (Puterman, 1994; Sutton & Barto,

1998). Here the agent receives a reward at each state and

its objective is to adapt its behavior to maximize long-term

cumulative reward. The value of a state is then defined as the

expected future reward the agent can obtain starting from it

and following a given plan. In the type of game we consider

here, we assume the agent only receives a positive reward

when reaching a goal state (or set of goal states), and zero

reward at every other state. By using a discount function, a

http://www.matemarote.com.ar/
http://www.matemarote.com.ar/
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maximizing agent tries to reach the goal state in as few steps

as possible.

Each state’s value can be estimated by a value function

(Péret & Garcia, 2004), as the average of the outcomes of

simulated games (Kocsis & Szepesvári, 2006), or deduced

from the structure of the game (McDermott, 1996). Addi-

tionally, some algorithms, like those in the MCTS family,

back-propagate the actually observed reward to the previ-

ously visited states and “learn” truer value estimates (Koc-

sis & Szepesvári, 2006). Here we propose a model based

on a value function which combines heuristics with partial

knowledge of the game.

Many MCTS algorithms do not have knowledge of state

values before searching (Browne et al., 2012). The value

function is calculated during search, by performing several

simulations (called roll-outs) of the game. These algorithms

estimate the value of unknown states in a Monte Carlo fash-

ion and then behave in a deterministic manner.

The planning algorithm we employ here has two main

differences: 1) It has prior estimates of the value functions

and 2) it stochastically generates several sequences of actions

(plans) using a search method guided by the state. We will

call each stochastic process that generates a plan a roll-out.

The DCM state graph is an undirected and cyclic graph

so the expanded trees can be infinitely long. Our proposed

model assumes a maximum plan length, H, that we call the

search horizon and a fixed amount of roll-outs, R.

The value of a state that can be reached at discrete time

t + 1, V(st+1), is determined by:

V(st+1|st−1) = γD(st+1) − nr(st+1, st−1)

D(st+1) = ηK(st+1) + (1 − η)G(st+1)

nr(st+1, st−1) =

{

nr if t ≥ 1 and st+1 = st−1

0 otherwise

(1)

In these equations, D(st+1) is an estimate of the distance

between the state st+1 and the goal. D derives from two dif-

ferent sources. First, a faithful representation K of the dis-

tance between st+1 and the goal. Second, a heuristic function

G (G for greediness) which simply computes the number of

characters that are outside their home. Based on Klahr’s re-

sults (Klahr, 1985) we assumed that children would use this

heuristic to estimate the proximity to the goal.

In this model, η simultaneously controls two different as-

pects of children knowledge. For values of η ≃ 0, the behav-

ior of the model is determined by greediness, reflecting no

internal knowledge of the game. When η ≃ 1 the value func-

tion reflects a perfect internal knowledge of the distances in

the game. This means that η controls whether value is guided

by an heuristic of greediness or by a correct representation of

the game structure.

We also run a model with an additional parameter, σ,

which can independently control: 1) the relative contribu-

tions of the heuristic and of the correct representation to the

value function, and 2) an added internal noise to the value

function. Noise was added as follows:

V̂(st+1|st−1) = γD(st+1) − nr(st+1, st−1) + n

n ∼ N(0, σ)
(2)

where n is a random number sampled from a gaussian prob-

ability distribution with zero mean and σ standard deviation.

In this stochastic modification, high σ gives completely ran-

dom value estimates and leads to random action selection

whereas σ ≪ 1 leads to a stable internal representation of

the value.

Here we make explicit certain assumptions and limitations

of our model. First, we have largely simplified the problem

by assuming that children have some degree of knowledge

of the game K and are guided by a heuristic of greediness

G. This has several limitations: first there are other domain

specific heuristics that are not incorporated in this simpli-

fied model. For instance, children have a preference to rotate

characters clockwise (see Fig. 4.a).

Second, here we do not provide a general mechanism (that

is, a mechanism which is not problem specific) to produce

these heuristics (Geffner, 2010; Hoffmann & Nebel, 2001).

For instance, relaxation, a mechanism by which specific con-

straints (or rules) of the game are ignored (relaxed) consti-

tutes a general procedure to produce heuristics. In our spe-

cific case, G can be obtained by relaxing the rules that char-

acters cannot overlap in one home and that characters ought

to move through the ladders. Third, we do not provide a

mechanism by which children may obtain the knowledge of

the internal structure of the game (i.e. how they can compute

K).

Our approach instead relies on deriving a heuristic which

incorporates known resources from previous work (Klahr,

1985) and imperfect knowledge of the game which is rep-

resented in K. The agent with values of σ = 0 and η = 1 will

have access to perfect knowledge (although play will not be

perfect due to noise in the search process). As σ increases

and η decreases, the knowledge of the game worsens and is

driven by noise or purely greedy behavior. In our model we

can fit, for each child, the relative weight of these parameters

for this fixed class of hand-coded heuristics, and explore how

they form the value estimate.

The parameter γ maps the distance estimate D(st+1) to a

value estimate. This is an implementation of a delayed re-

ward exponential decay analogous to the reward discount in

the RL and MDP frameworks (Sutton & Barto, 1998) and for

which a biophysical correlate has been described (Roesch,

Calu, & Schoenbaum, 2007).

The nr(st+1, st−1) function is a non-Markov function that

penalizes the value of back-up moves (Klahr, 1985) 1. As

1Technically, a probability distribution has the Markov property

(leads to sequence of states forming an order 1 Markov chain) when
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the parameter nr grows larger, the action that produces the

back-up becomes less valuable.

The search process starts from a given state s0 at time step

t = 0 and generates R sequences of H consecutive moves.

Since moves in the game have a deterministic effect, a se-

quence of moves is equivalent to a sequence of output states

given by each move. The probability of selecting an out-

put state st+1 during each roll-out was taken from a softmax

probability distribution:

P(st+1| {st, st−1}) =
eβV(st+1|st−1)

∑

reachable s′
t+1 from st

eβV(s′
t+1
|st−1)

(3)

The β parameter is called the softmax inverse temperature.

When it’s high, the probability of selecting the highest val-

ued state st+1 is almost 1 and when it’s low the distribution

becomes uniformly random. After having R stochastically

generated plans, the model selects the one that has the largest

end-state value, V(sH |sH−2), and executes it. If there are mul-

tiple plans that have equally valued end-states, it chooses

randomly amongst them. If the goal is reached during the

executed plan, the consecutive moves do nothing and the end

value is the value of having reached the goal. If the goal is

not reached during the plan, the search process restarts from

sH and takes into account sH−1 and sH−2 to recalculate the

value function.

To clarify how the algorithm works, we show the pseu-

docode of the plan selection (algorithm 1) and summarize

the model’s parameters in Table 1.

Our model stochastically travels through the game graph

but it does not do so blindly. It tends to follow the best pos-

sible output given prior value estimations. For instance, if

the model has a large nr constant, the value of the backup

moves is greatly penalized and thus they are less likely to be

selected. Another feature is that when the model has a high

β, the model tends to always select its believed best output

state. If β is very low, it selects almost randomly. A perfectly

performing model would be one with η = 1, a very high β

and γ ∈ (0, 1). For the extended model with noise in the

value estimate, the perfectly performing parameters would

be the above in addition to adding σ = 0.

The model is capable of parsing whether children’s im-

perfect performance results from imprecisions in the value

function or noise in the search process. For instance, a highly

deterministic search process based on an imprecise value

function will result in recurrent and stereotyped errors corre-

sponding to local maximums of the value function. Instead,

an accurate value function sampled with a very noisy search

process would yield to a non-structured pattern of errors.

The planning model parameters are the search horizon H,

the number of plans constructed during the search process

R, the softmax inverse temperature β, the reward discount γ

and the value function weights η and nr. In this work, we

fit the last four parameters for R = 3 and H = 1, 2 or 3 so

as to minimize the squared difference between each child’s

and the model’s mean performance vs distance curve. We

also do this setting nr = 0 and thus not including inertia. We

simulate the model’s mean performance in the correspond-

ing child’s played states, repeat the simulation 10 times, and

take the mean vs distance. We consider this to be the model’s

mean performance vs distance data which we use to calculate

the squared difference with the children’s data. We then use

MATLAB R©’s fmincon function with the interior point algo-

rithm to find the set of parameters that minimize the squared

difference between each child’s and the model’s mean perfor-

mance vs distance data. The parameter values were searched

in the intervals β ∈ (0, 20], γ ∈ (0, 1] and {η, nr} ∈ [0, 1]

The fitted models correspond to Markov (when nr = 0)

and non-Markov agents (nr , 0) that attempt to reach the

same performance as each child. In the Results section we

show how well the model fits the data and conclude that the

children are inherently non-Markov.

Additionally, we fit the extended model parameters,

which include σ, for a range of β and σ values in order to

show that the non extended model is robust against noisy

value representations.

3 Results

The results section is organized as follows: in Secs. 3.1

and 3.2) we show that the validity of the behavioral observa-

tions (stationary performance, II, and stochastic, III, but not

fully random behavior, IV) which justified the choice of the

model.

In Secs. 3.3 and 3.4) we assess the planning model’s ca-

pacity to fit the data and test the working hypothesis enumer-

ated in Sec. 1.2 (A, B and C).

3.1 Evolution of children’s performance throughout

multiple sessions

We first investigate how children’s performance changes

over time. In the first 9 trials2 performance was high,

(85 ± 1)% (Fig. 2). As the game progressed, children faced

initial conditions which were further from the target, as de-

scribed in section 2.1. We observed a consistent drop in per-

formance, found in around 70% of the children in specific

trials.

it conditionally depends only on the current state. As we will use

the value estimates in 1 to set a probability distribution, we say that

function nr is non-Markov as it breaks this conditional dependence.
2During these the children won if they reached the goal state in

less than 50 moves, but in this analysis we considered a trial to be

correctly solved (performance=1) if the goal state was reached in

the minimum number of moves.
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Input: starting state s0, goal state G, H, R, γ, η, β and
nr

1 Main Procedure: begin
2 t← 0;
3 st ← s0;
4 st−1 ← s0;
5 while st , G do
6 Selected_plan←rolloutPlan (st,st−1);
7 Execute the actions in Selected_plan and

update st, st−1;
8 t ← t + (Number of actions in Selected_plan);
9 end

10 end

11 Function rolloutPlan (st,st−1): begin
12 Selected_plan←Initiate as an array of H moves;
13 plans←Initiate as a list of R empty arrays of H

moves;
14 for i← 1 to R do
15 single_plan←Initiate as an array of H moves;
16 for t′ ← 1 to H do
17 a′ ←find executable moves from st;
18 s′ ←states reachable from st;
19 V ′ ←compute values of s′ with

Value(s′,st−1);
20 st−1 ← st;
21 st ←Select one state from s′ using softmax

probability with values V ′;
22 plans [i][t′]←Assign the action that

produced the selected s′ state;
23 if The selected st == G then
24 break;
25 end
26 end
27 end
28 Selected_plan←Select the plan in plans with the

largest end-state value;
29 return Selected_plan;
30 end

Algorithm 1: This shows the pseudocode of the plan-

ning algorithm. For the sake of clarity it is divided

into the main procedure which “plays” the game and the

function which produces the roll-out plans and selects

amongst them. The required inputs are the starting and

goal states, the planning horizon H, the amount of search

roll-outs R and the parameters γ, η, β and nr. In the

case of the extended model, parameter σ must also be

added. The first lines in the main procedure initiate the

time-step t, the current state st and the last visited state

st−1. At line 5, the game starts and the planning process

executes until the goal is reached. At line 14, it starts

to generate the R independent roll-outs. The search for

the sequence of H moves to execute begins in line 16.

It is guided by the values of the possible output states s′

computed in line 19. Once all R plans are generated, they

are compared (line 28) and only one is selected (line 29).

The selected plan is then executed (line 7) and the time

step is increased. Once this is done, if the goal has been

reached, the algorithm stops, if it was not, the algorithm

restarts at line 5.

This decrease was modest but significant - a t-test com-

paring the last 200 trials’ mean performance against the per-

formance data in windows of 30 trials revealed a significant

drop only between trials 30 and 90 (p < 0.0009 d f = 29,

Bonferroni corrected (Dunn, 1961)). This drop is observed

when the initial configuration of the game is set at distance

four from the goal, and performance slowly rises over a large

period of trials when game is set at distance 5 from the goal

(Fig. 2). Beyond this initial drop, performance remained

relatively stable and stationary. A raster plot, displaying the

performance of each child throughout the experiment, shows

that children persist in doing a relatively small fraction of

mistakes throughout the experiment.

The increase in the variance of the mean performance to-

ward the end of the experiment results from the fact that

fewer children contribute to the mean in this stage.

Based on these observations we conclude that the assump-

tion of stationary performance corresponding to condition II

of Sec. 1.2 is consistent with the data.

3.2 Children’s performance in the state-space

Since children’s mean performance over time remains ap-

proximately constant, we pool together the data from all 4

phases of the game in order to analyze performance in the

game graph. Children’s selection of moves is not random. If

this were the case, children would lose more often at states

that were farther away from the goal. Instead, we observe

that performance reaches a minimum at a distance of five

to the goal and then ramps-up again for initial states closer

to the antipode (i.e. the state furthest away from the goal,

Fig. 3.a). This non-monotonic dependence is quantitatively

confirmed by a binomial test. We assume that the number of

trials won and lost at a starting distance of 4 comes from a bi-

nomial distribution. We use the observed counts to compute

the binomial parameter and its 95% confidence interval. We

then compute the probability of obtaining a number of wins

lower or equal to the observed count at distance 5 states, from

a binomial with its parameter equal to the lower bound of the

distance 4 confidence interval. This gives us p < 10−30 that

the performance at distance 5 is greater or equal to the per-

formance at distance 4. Analogously for distance 5 and 6, we

perform a similar test using the higher bound of the distance

5 binomial estimate and find p = 10−10 of distance 6 states

having lower or equal performance to distance 5. This is one

(among many) demonstrations that children’s play is struc-

tured and far from random. On the other hand, children’s

play has some intrinsic stochasticity. Again, there are several

demonstrations of this, but one clear example is that each

child shows intermediate levels of performance at the ma-

jority of states (for example, every single child in this study

showed a performance level in distance 5 states between 30

and 70 percent).

When analyzing performance for each state in the game
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graph (Fig. 4.a), we observe an abrupt performance drop

below the graph’s equator, with a marked rise at the goal’s

antipode. Above and beyond the previously described de-

pendence on distance, in this representation we can also see a

left-right asymmetry in performance. An analysis of the first

move of each trajectory reveals stereotyped aspects of be-

havior: children tend to move the characters clockwise (Fig.

4.a) and for both distance five states of the inner ring, correct

selection of the first move drops significantly below chance

levels (0.35 ± 0.05% when chance is at 66%).

These results point to the fact that children’s behavior is

variable, but displays stereotyped patterns. Combined with

the observations stated in Sec. 3.1 and the fact that children

understood the rules of the DCM game and the possible state

transitions, the four necessary hypotheses that are required in

order for the proposed planning model to be meaningful (I,

II, III and IV in Sec. 1.2) are satisfied.

Another very important feature observable in the data is

that the movement selection policy changes dramatically de-

pending on the history of past moves (i.e. children’s move-

ment selection policy is non-Markov).

To exemplify this we first measure the selection rate when

this choice is made on the first move of the sequence. We

compare this, to choices made at the same state when the

move is done later in the sequence, in particular, after the first

move was correct (Fig. 5). To statistically confirm that these

two distribution of choices are different, we perform Pear-

son’s χ2 tests (Plackett, 1983) and G-tests to reject the hy-

pothesis that both move selection rates come from the same

multinomial distribution. When testing the move selection

distributions for the pooled data of every child, we find sig-

nificant differences for all states (D ≥ 2), even after applying

the Holm - Bonferroni correction (G-test p < 0.047, Pearson

p < 0.03). These differences are most significant for every

state between distance 4 and 6 (p < 10−6 for both tests with

d f = 1 or 2 depending on the number of moves available

at the state). To see that this pattern holds for each child

separately, we construct contingency tables containing the

summed number of correct and incorrect, first and passing

after first correct moves for all states between D = 4 and

D = 6. Then, we test (g-test and pearson test) if the number

of correct and incorrect selections for each condition come

from the same binomial distribution. We do this for children

with more than 125 trials played (64 out of 73) in order to

have enough data to perform powerful tests. All the tested

children show significant differences between first and pass-

ing, correct and incorrect movement selections, even after

Holm - Bonferroni correction (p < 0.01).

3.3 Model for children’s performance in the state-space

As observed in Sec. 3.1, children’s performance over time

remains approximately constant. This allows us to simplify

the game-play model by using a non-learning planning agent

3 (i.e. the agent will show a stable running mean perfor-

mance), such as the one detailed in Sec. 2.3.

The planning model proposed in Sec. 2.3 uses several pa-

rameters (Table 1) to determine its gameplay. We fit values

of β, γ, η and nr for each child by minimizing the squared

difference between the measured and simulated mean perfor-

mance as a function of distance. The number R is fixed at 3,

and H was set to 1, 2 and 3, producing different parameters

for each value of H. As stated in Sec. 3.2, we use all the trials

played by each child. We do this in order to produce better

statistical estimates, and also because for several analyses,

there are not sufficient data in each phase for reliable regres-

sions. In A we show that restricting analyses to phase 4 (the

phase for which we have more data) yields performance fits

of similar quality as a function of distance, when compared

to the analyses that consider all phases. We also fitted the

model parameters while setting nr = 0. We refer to this case,

with H = h, as the model without inertia, and represent it

as 〈 H=h, nr = 0〉. The case with inertia is represented as

〈 H=h, nr , 0〉.

The non-inertial models (Fig. 3.b, left panel) could not

reproduce the children’s mean performance vs distance data,

and for H = 1 and 2, yielded monotonically dropping perfor-

mance as a function of distance. The 〈 H=3, nr = 0〉 shows a

higher performance at distance 7 (in the antipode) than per-

formance at distance 6. The explanation for this observation

resides in specific details of the state-space graph. First, note

that the antipode and the target are in two different rings of

the graph. Hence, simply by chance the fraction of correct

n-plans (which include moving from one ring to the other)

is greater when parting from the antipode. This effect is

more prominent for odd depths, because the diagonal move

is available only in one of every two configurations. Second,

the greedy heuristic tends to bias the model towards configu-

rations in which the majority of the pieces are in the correct

place. The antipode is a greedy local minimum (one of the

characters is in its home position). Hence, the agent (driven

by greediness) often returns to the antipode when it computes

two moves forward. When it computes three moves forward

(H = 3), it is impossible to generate a plan that starts and

ends at the antipode. The end-state value is not as biased

in this case, and it is more likely to escape from the local

minimum. We perform a Pearson χ2 statistical test (Plack-

ett, 1983) to test if the different models and the children’s

total number of wins significantly differ. They all do with

p < 10−6 for H = 1 and 2 and p < 0.01 for H = 3 all

with d f = 1. Hence, from these results we can conclude that

model fits without inertia are both qualitatively and quantita-

tively inaccurate.

The inertial models (Fig. 3.b, right panel) 〈 H=1, nr , 0〉

3In the present framework, we say that AI agents learn if they

update the values of the states according to their performance in the

game, in a way that makes them play better.
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and 〈 H=3, nr , 0〉 also yielded poor quality fits and signif-

icantly differ from the children’s mean performance (p <

10−6, d f = 1). Only model 〈 H=2, nr , 0〉 does not sig-

nificantly differ (p = 0.95, df=1). Thus 〈 H=2, nr , 0〉 is

the best of all the candidate models to describe the children’s

DCM gameplay data. The fact that the best fit occurs when

H = 2 is consistent with our working hypothesis A based on

Klahr’s data (Klahr, 1985).

The inertia model also captures some interesting aspects

of the movement selection rate that the other models do not

capture. The children’s data show that, when starting at dis-

tance 5 inner ring nodes, the first move that is selected is

wrong more often than if the children moved randomly (Fig.

4.b). A similar behavior is observed in 〈 H=2, nr , 0〉, al-

though for a different set of distance 5 states (outer ring nodes

instead of inner ring nodes). This behavior is not observed

in the non-inertial models, which do not become sufficiently

“stubborn” to perform below chance in certain specific initial

configurations, and always show a first move selection rate

that is biased towards the correct move.

This is most likely due to the fact that for non-inertial or

Markov agents, the selection rate of actions in a given state

is independent of the previously visited states. Thus, if the

model biases the movement selection rate in a state at dis-

tance 5 from the goal toward the wrong move, the distance 6

and 7 nodes, whose correct game play must pass through this

state, would be greatly affected. As the children play very

well in the antipode, the model must balance the movement

selection bias in order to partly fit the good gameplay in the

antipode and the bad gameplay at distance 5 nodes. How-

ever, the non-Markov agents can produce this bias without

greatly affecting the performance at distance 6 or 7 because

of the inertial movement selection rate. The persistence in

systematic errors is a stubbornness of model-based agents:

they “trust” a model which works well on average but fails in

certain specific configurations (Sutton & Barto, 1998).

These results were based on an analysis of performance

from any given configuration. The differences in behavior

between inertial and non-inertial models are expected to be

more pronounced in intermediate actions throughout the tra-

jectory of a trial. Children’s performance, like the inertial

model’s performance, is very high (above 80%) for all dis-

tances (Fig. 3.c). In other words, if the first move is correct,

then children have a very high chance of making it to the goal

because they persist in the same path. This feature is not ex-

pressed by the non-inertial models, whose performance does

not change very much as a function of the first move’s cor-

rectness.

These observations support the working hypothesis of

non-Markov behavior (B in Sec. 1.2).

Although the 〈 H=2, nr , 0〉model can describe many as-

pects of the data, it cannot account for the entire set of obser-

vations. For instance, it cannot explain the non-symmetric

movement selection rate for states that are to the left or to

the right of the goal and antipode in the game-state graph

(Fig. 4). As mentioned above, our intention here was not

to achieve a perfect fit with a very complicated model which

would describe highly domain specific aspects of the data.

A concern about our model is that it assumes that children

have partial access to the correct representation of the game

K, which seems unlikely and, moreover, we cannot offer pre-

cise ways as to how this representation can be computed. The

logic for this simplification is as follows. First, greedy dis-

tance estimates and inertia cannot be the only inputs to the

value function available to children. If this were the case, the

first move selection rate should always be biased toward the

local minimums of greedy distance. This is not observed in

distance 6 and distance 5 outer ring states (Fig. 4), which

were close enough to the antipode to be able to suffer such

bias. Also, many states form a sort of greedy plateau in the

graph (distance 4, 5 and 6 states). To traverse these states,

children require resources beyond the greedy heuristic. We

reasoned that inertia may serve this purpose and modeled an

agent dictated only by the herustics of inertia and greedi-

ness (nr , 0 and η = 0). Results show that the model’s

performance is significantly worse than the children’s per-

formance (p < 10−18 d f = 1), but also showed increased

performance in the antipode (Fig. 6). The latter observa-

tion is a consequence of inertia and indicates that the greedy

value plateau is crossed with this extra resource. However,

the fact that children’s performance is much higher than the

model’s points to the fact that children have access to other

resources to generate a value function beyond greedy and in-

ertia heuristics.

A second concern, is that the value function is completely

deterministic. To solve this problem we ran a model with an

additional parameter which adds random noise to the value

function (eq. 2). For high values of σ the value function

is simply random. For low sigma the value function repre-

sents partial knowledge, corrupted by a heuristic of greedi-

ness. Results (Fig. 6) show that there is a strong concave

zone for the mean squared difference in the pair {σ, β} which

reaches a minimum for σ ∼ 0 and β values similar to the fits

of the non-extended model.

Hence, the results of simulations with the additional pa-

rameterσ, which adds noise to the value function, show quite

conclusively that the best fit is obtained for an almost noise-

less value function σ ∼ 0. Moreover, for the lower values

of σ, there is a broad range of β values that fit the data rea-

sonably well, indicating that the injection of non-zero noise

in the value function results in an agent which is less robust

to noise, or has an imperfect determination of the search pa-

rameter β. This may seem counter-intuitive, since one could

assume that higher values of σmay in fact reflect a better ad-

justment of an imprecise value function (there is no rationale

to assume that children have a perfect representation of the
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game, but instead several resources which may approximate

it). This shows that the attempt to adjust this “intermediate

knowledge” as a noisy version of perfect knowledge turned

out not to work, implying that children must have a list of

available resources that approximate perfect performance of

the game in a deterministic way (better than simply inertial

and greedy behavior which, as we showed above, cannot ac-

count for the data).

Another simple computational account of how partial

knowledge of the game may be incorporated into the value

function is that children may know that the game is solvable

from certain states. This is typical in many planning games

where states can be divided in two classes: 1) a subset of

states which are “known territories”, where value can be cal-

culated directly or can be looked up in a table, and 2) a more

complex domain (typically, further from the goal) where the

only resources are heuristics. As an analogy, a chess player

may feed the value function distinctively from heuristics or

from game knowledge in different states. In complex posi-

tions the value function has to be based on heuristics (num-

ber of pieces, number of threats, mobility of pieces, occu-

pation of key squares...). Instead the player may know that

certain positions - for instance a rook and king vs king end-

ing - are won, and have a precise, known and deterministic

procedure to solve them. In our model, this is equivalent to

saying that η depends on the state. For certain states children

may have full knowledge of the game (i.e. η = 1) while for

other states (presumably at greater distances) they might only

rely on heuristics.

Equivalently, this scenario can be modeled with a function

K that encodes the distance to the goal in a subset of states

and assumes a uniform value for all other states. Hence, the

minimization of the value function is determined by K in this

subset of known states and by the heuristic in the remain-

ing states where K is homogeneous, revealing lack of knowl-

edge. In the simplest case, the subset of states is determined

by a horizon of a given X (i.e. all the states with d < X). 4

If all children have the same horizon of known states, our

data could be described by a value function based on K+Heu

(Heu for heuristic), where K assumes low and precise values

for the subset of known states (d < X) and dominates the

value function. The contribution of Heu becomes relevant

only in the unknown states in which K saturates.

Analysis shows that the data is inconsistent with the hy-

pothesis of a fixed horizon of perfectly known states X: all

functions in which K saturated at a horizon showed consis-

tently worse fits (see Supplementary Fig. B).

3.4 Modeling Children’s variability

In this section we zoom in on 〈 H=2, nr , 0〉, analyzing

the mean performance at each starting distance, assuming

that each child’s data are independent from one another. Per-

formance varies widely between the children (Fig. 7). The

broadest variability is observed, as expected, for the more

difficult conditions of D = 5 and 6. A raster plot shows that

changes in performance of the model, as with children, are

mainly governed by problems with starting configurations at

these distances. We perform a linear regression between chil-

dren and their corresponding model performance for D = 5

and D = 6 separately. This shows a significant correlation

(for D = 5, standard coefficient 0.64, p = 2 .10−8, d f = 71

and for D = 6, standard coefficient 0.38, p = 6 .10−5,

d f = 71). Moreover, the model does not show significant

differences in the variance in these conditions. However, for

the shorter distances, the model shows a greater dispersion

(Fig. 7).

We test whether the model has the same variance in per-

formance as the children at each starting distance with a Lev-

ene test (Levene, 1960) (the null hypothesis is that the vari-

ances are the same). This analysis shows that the model’s

variability does not significantly differ for the longer dis-

tances, but does differ for D = 2 and D = 3. For tests with

Bonferroni and Holm - Bonferroni corrections, D = 2 is the

only distance at which the variances significantly differ (table

2).

All children, even those that have the lowest mean per-

formance, are virtually perfect in these trials, and the model

shows more variance and worse performance. The model

is not perfect for H = 2 at distance 2 because it generates

plans stochastically (with a distribution determined by β),

and some of these plans never reach the goal. A natural ex-

tension of this model which could solve this problem would

have β be dependent on the distance. In practical terms, this

may reflect the fact that children do not play in the same way

for simple (D = 2, 3) and hard (D = 5, 6) problems, much

in the same way that mathematical addition of small num-

bers uses different cognitive resources (memory, verbal op-

erations. . . ) than addition of large numbers (Dehaene, 1997).

An important aim of this investigation is to determine

whether individual parameters obtained from the model are

informative about children’s performance beyond this spe-

cific game setting. Our hypothesis (C), described in Sec.

1.2), is that parameters which affect the value function should

show little transfer, while search parameters should instead

transfer to novel problems. To examine this hypothesis, we

measured each child’s parameters: β, γ, η and nr (see Table

1) where η, nr and γ conform the value function (see equa-

tion 1). For 〈 H=2, nr , 0〉, β = 9.5 ± 4.8, γ = 0.46 ± 0.30,

η = 0.44 ± 0.21 and nr = 0.50 ± 0.26.

We first investigated the correlation between the model’s

parameters and each child’s mean performance. Mean per-

formance covaries positively with η (0.18±0.13). This is ex-

pected, since it simply states that children whose value func-

tion relies more on game knowledge and less on a greediness

heuristic have a greater chance of choosing correct moves.

4This must not be confused with the planning horizon.
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In contrast, β, γ and nr do not show a significant correlation

with performance (0.01± 0.12, −0.09± 0.10 and 0.11± 0.13

respectively). These parameters also show expected interac-

tions. For example, it is reasonable to expect that the group

of children that tend to select their moves more randomly

(low β obtained from fit) will not show a correlation between

η and performance. We confirm this by comparing the cross

correlation between the mean performance and η for the chil-

dren that have the 25% lowest β and the 25% with the highest

β. The correlation for low (high) β is equal to 0.05 (0.57),

with the p-value of being randomly correlated equal to 0.41

(0.008) (Fig. 8).

This analysis is largely expected and merely confirmatory.

The most interesting question is if the obtained model param-

eters are indicative of the children’s performance in a differ-

ent game. To this aim, we correlated parameters of the model

with performance in the Tower of London (ToL) game, mea-

sured in two independent sessions, several days before the

beginning and after the completion of the DCM game. To

measure the correlation between the model’s parameters and

DCM and ToL performance, we split the children’s data into

five groups (their corresponding school classes). We then fit

a linear regression between the model’s parameters and the

performance measures. In DCM, the performance measure is

the fraction of times the children arrived at the goal state in

the minimum number of moves. In ToL, the model parame-

ters were regressed against many performance markers (if the

goal had been reached, if it was done in the minimum amount

of moves, and if the maximum difficulty was reached). We

then perform a t-test over the regressors and use the stan-

dard coefficients to measure the strength of the correlations.

The null hypothesis was that the coefficient’s mean value was

equal to 0 and thus the model parameter was not indicative

of ToL performance. We observe that η, which had a ma-

jor influence in DCM, does not show significant transfer to

performance in ToL (p = 0.31, d f = 29). Instead, the dis-

count rate (γ), and most notably the stochasticity of branch

selection in the search process (β), show significant transfer

indicative of children’s performance in ToL (p = 0.03 and

d f = 29 for both). Parameter nr does not show significant

transfer either (p = 0.1 and d f = 29).

We also performed the test adding DCM total mean per-

formance as a regressor. We find that this is significantly

correlated to ToL performance, but the parameter β remains

significant (p = 0.03 d f = 29). However, the parameter

γ ceases to be significant (p = 0.11). These results are in

line with our working hypothesis that the non-game-specific

parameters (β) should show transfer to other planning tasks,

while the game-specific parameter (η, nr and γ5) should not

(C in Sec. 1.2).

4 Discussion

Our work is inspired by Klahr’s (Klahr, 1985) in that we

1) used the Dog-Cat-Mouse game to investigate children’s

performance in a friendly version of an N-puzzle 2) mod-

eled the children as stochastic agents that “walk” through the

game state graph and 3) aimed to detect “weak methods” and

search strategies used by children to solve the game. The

main differences from Klahr’s original work (Klahr, 1985)

are 1) the investigation of they dynamics of play and 2) gen-

erating a large corpus of data with several sessions of play

per child, which allowed us to parse out different aspects of

the planning strategy (Geffner, 2010): heuristics and knowl-

edge of the game, which contribute to a value function, and

search strategies to define actions based on the distribution

of a value function. The models presented here, which use

more sophisticated mathematical constructions and are de-

rived from a large corpus of data, satisfied the expectation

of performing better than Klahr’s agents (see Supplementary

C). In fact, only a few distances and states were sampled in

Klahr’s original paper, and the observation was that distance

was a bad predictor of performance. Here we zoomed in

on this result, revealing a very idiosyncratic pattern of de-

pendence on distance that allows us to identify children’s

computational resources for problem solving. Using this ap-

proach, we were able to separate the contributions made by

how randomly children selected their moves, and the mecha-

nism that guided their selection.

Our assumption, and the core of the model presented here,

is that action selection is stochastically guided by the com-

bination of a slow recursive simulation of possible outcomes

(the search process) and the use of a fast value estimation

(that uses both knowledge and heuristic functions). Direct

behavioral observations revealed several principles which

justify the choice of this class of models.

First, the data revealed mostly stationary levels of perfor-

mance (Fig. 2). Children played well above chance from the

very first trial. This demonstrates that they do not need to

go through a slow trial and error learning process to acquire

resources that allow them to play the game.

Second, the data showed stubbornness and error persis-

tence in certain specific game configurations (Fig. 4.a).

These are typical features of models - like the one we pro-

posed - based on stochastic search of value functions. To

achieve accurate performance (as children do), the model

has to have relatively low levels of stochasticity in the search

process (high β), which is not sufficient to prevent the planner

from falling repeatedly at local minima of the value function.

Third, the movement selection rate significantly differed

in several states depending on the history of previous moves

5Although nr and γ are not game specific, they are part of the

value estimation module and are strongly correlated to the game-

specific heuristic and knowledge
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(Fig. 5). This indicates that performance cannot be described

by a Markov agent that makes decisions based only on the

present game configuration without taking into account how

that state was reached. This justifies the inclusion of a no

return cost in the value function. The incorporation of such

a procedure in the value function is reminiscent of the sunk

cost in behavioral economics (Arkes & Blumer, 1985), which

refers to a past cost that has already been incurred and cannot

be recovered, but which nevertheless conditions subsequent

actions leading to non-Markov behavior.

Our modeling approach can be linked to the field of

bounded rationality (Gigerenzer & Selten, 2002) which

states that perfectly rational decisions are often not feasi-

ble in practice, because of the finite computational resources

available for making them. The rationality of individuals is

limited by certain facts, such as the information available,

the amount of time to make a decision and cognitive abili-

ties. The “weak methods” that children are observed to use

may be viewed from this standpoint. However, we believe

that within this general class of ideas, our model adds some

specific concepts. Above and beyond their lack of sufficient

knowledge, children have specific stereotyped gameplay ten-

dencies such as avoiding back-up moves. Inertia may be an

adequate resource in certain circumstances, but it prevents

perfect play from a general standpoint.

This set of observed behaviors justify the choice of the

model’s class. This justification is important because our fit-

ting procedure can select which of a number of models ex-

plains the data better, but cannot inform how candidate mod-

els are generated in the first place. After choosing the class

of models (stochastic planners), fitting serves two purposes.

First, to infer the parameters such as depth search, which are

meaningful variables of children’s thought. Second, to ask

whether these parameters are indicative of a repertoire of a

child’s general resources, which may serve to predict perfor-

mance in different tasks.

Individual performance in two structurally identical prob-

lems may differ due to domain specificity. Our modeling

effort can be seen as a way to factor out domain specific pro-

cedures which contribute to the value function. In agreement

with this expectation, we show that search specific parame-

ters of the model are the ones that are informative for pre-

dicting performance in a different planning task (Sec. 3.4).

Our work has several limitations which should be solved

in future research. First, during our work we assume a given

form of the heuristic function and game knowledge. We ex-

pect that these are not the true estimation methods, but gen-

eral approximations that are suitable for the DCM game. We

certainly acknowledge, that the inclusion of a correct dis-

tance knowledge as a weighted factor in the value function is

a simplification of the problem solving resources. Second, a

very important the puzzle which should be resolved by future

work is how to incorporate domain independent and scalable

heuristics, that are constructed using general procedures such

as, for instance, the relaxation method (Hoffmann & Nebel,

2001; Keyder & Geffner, 2008; Pearl, 1984), into the model

instead of using heuristics that are encoded by hand.
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Variable Meaning

β The Softmax inverse temperature that governs the softmax search probability distribu-

tion (eq. 3). A high value of β yields a greedy search that only expands the highest

valued states whereas low β gives purely random state selection.

γ The reward discount γ maps the distance estimate D(st+1) to a value estimate. It’s

an implementation of a delayed reward exponential decay analogous to the reward

discount in the RL and MDP frameworks (Sutton & Barto, 1998).

η The mixture factor between partial knowledge K and heuristic G distance values for a

given state st+1 (Eq. 1).

nr The value penalization of a backup move. It’s used in the nr(st+1, st−1) non-Markov

function (eq. 1) in order to penalize the value of the state st+1 if it is the same as st−1.

σ The standard deviation of the gaussian noise added to the state value estimate (eq.

2). This noise can factor out the weight of greediness and the quality of the internal

representation of the game.

H The plan horizon or the maximum search depth.

R Number of rollouts. It refers to the number of plans searched before selecting the

highest end valued state.
Table 1

A detailed list of the planning model variables and their meaning.
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Distance D = 2 D = 3 D = 4 D = 5 D = 6 D = 7

p-value 0.006 0.019 0.52 0.63 0.12 0.24
Table 2

The Columns contain the data’s Levene test p-value for each starting distance. A Bonferroni and a Holm - Bonferroni (Holm,

1979) corrected test yields only significant differences for D = 2.
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Figure Captions

Fig. 1: The 4 upper panels show a game play example.

Below these, the graph of the game states is plotted. The

color circles represent each character (pink = girl, blue =

boy, green = cat). The squares stand for the tree-houses and

the colors indicate to which character it belongs. The red

arrow represents the game trajectory of the upper panels in

the graph. The states are labeled by the numbers next to

them.

Fig. 2: The upper panel shows the mean performance

over all the children that reached each trial. The curve is

smoothed with a running average of 10 trials and the darker

color zone shows the standard deviation of the mean. The

horizontal slashed lines are the mean performance over all

trials. The lower panel shows the performance of each child

in every trial. It shows that performance drops are observed

in almost all children, which cannot be seen from the upper

panel. This raster also shows that there is a density of

mistakes in the majority of children sustained throughout the

experiment. The subjects were arranged to have a growing

amount of trials in the vertical axis. The black patches in this

graph indicate that the trial was won in the minimum amount

of moves and the gray ones indicate it wasn’t. The white

patches correspond to having no data for the corresponding

trial. During phases 1 and 2 of the game, children face a

sequence of trials that have increasingly distant states. They

start from D = 2 and go up to D = 7. As this progression is

ordered, during the first trials most children play at the same

starting distance. The horizontal colorscheme indicates

which starting distance was the most common for the given

trial played by the children. It spans up to the trial where

more than half the children were playing in phase 3. The

vertical dashed lines indicate transitions to very difficult

starting distance states that are accompanied by a large drop

in performance.

Fig. 3: a) contains the mean performance curve over the

starting distances. The error bars correspond to the standard

deviation of the mean performance for each starting distance.

b) The two middle panel line plots are the children’s and

fitted models performance vs distance. The left panel

correspond to the Markov (without inertia) models fit. The

right panel shows the non-Markov model fit. c) shows

the mean performance vs distance of the children and

planning models with H = 2 with and without inertia. The

darker colored lines are the performance curves after a first

correct move and the lighter toned, show the total mean

performance. The N in the legend is the number of correct

first moves done by the children or the model’s simulations.

Fig. 4: a) shows in a blue scale, the children’s mean

performance for each state and in red, the first move

selection rate. Each graph node corresponds to the states

drawn in figure 1. The green node indicates the position

of the goal and the transparent nodes are states from which

the game never started. b) The panels show the fitted

models mean performance in the state-space graph with their

corresponding first move selection rate. The color-scales of

the mean performance and of the first move selection rate

are the same for all plots.

Fig. 5: Movement selection rate for the entire children

dataset. The bars are grouped in the horizontal axis

according to the states at which they took place and are

labeled with the state numbers as appear in Fig. 1. The bars

at a given state correspond to game moves that could take

place in it. The green bars are assigned to correct moves

in the state and the red bars to wrong ones. The horizontal

axis also shows the distance from each state to the goal. The

upper panel shows the first move selection rate and the lower

one shows the move selection rate when passing through a

state if the first move was correct (PAFC, Passing After First

Correct). There are visible differences between the first and

PAFC move selection in the states at distances 4 through 6,

that indicate a non-Markov movement selection policy.

Fig. 6: a) Shows the children’s total mean performance

vs distance in black. The color lines are the model fits for

H = 1, 2 and 3, with η = 0. b) and c) use mean squared

difference χ2 that is obtained from fits of the extended

planning model. b) shows the mean over all children χ2

divided by their largest χ2 value. The horizontal axis

corresponds to the values of β that in the left panel go

from 0 to βopt (that was obtained fitting the model without

sigma) and in the right panel from βopt to ∞. The vertical

axis corresponds to the values of σ and go from 0 to σopt.

The latter is the value obtained after fitting the model

with β → ∞. If σopt < 0.01, we used σopt = 0.01. The

parameter values used as σopt and βopt were distributed as

σopt = 0.04+0.16
−0.03

and βopt = 9.5 ± 4.8. c) shows the mean

over the values of σ of the data plotted in (b) in a logarithmic

scale.

Fig. 7: a) Each dot corresponds to a child performance vs

it’s fitted model performance. Each color is associated to a

certain initial distance labeled in the legend. Distance 5 and

6 plots (with a fitted linear regression in dashed lines) are

shown separately at the right side of the legend. b) Shows

the mean performance for each distance and each subject

in a gray scale (white is mean 0 and black is performance

1). The subjects index (vertical axis) for both panels are

arranged to have a growing total mean performance for the

children. The higher panel corresponds the children data and

the lower corresponds to the corresponding fitted model. c)

plots the difference between each child’s and corresponding

fitted model’s mean performance. Each panel shows the data

for a given starting distance state. The subject index was

sorted as to have a growing mean total performance.

Fig. 8: Children’s total mean performance vs the fitted η

value. The size of the markers is proportional to the number

of trials played by the child and the color corresponds to the
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fitted β value. The color-scale is shown in the colorbar next

to the scatterplot.
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