
Efficient Structure Learning in Factored-state MDPs

Alexander L. Strehl, Carlos Diuk and Michael L. Littman
RL3 Laboratory

Department of Computer Science
Rutgers University

Piscataway, NJ USA
{strehl,cdiuk,mlittman}@cs.rutgers.edu

Abstract

We consider the problem of reinforcement learning in
factored-state MDPs in the setting in which learning
is conducted in one long trial with no resets allowed.
We show how to extend existing efficient algorithms
that learn the conditional probability tables of dynamic
Bayesian networks (DBNs) given their structure to the
case in which DBN structure is not known in advance.
Our method learns the DBN structures as part of the
reinforcement-learning process and provably provides
an efficient learning algorithm when combined with fac-
tored Rmax.

Introduction
In the standard Markov Decision Process (MDP) formaliza-
tion of thereinforcement-learning(RL) problem (Sutton &
Barto 1998), a decision maker interacts with an environment
consisting of finite state and action spaces. Learning in envi-
ronments with extremely large state spaces is challenging if
not infeasible without some form of generalization. Exploit-
ing the underlying structure of a problem can effect general-
ization and has long been recognized as an important aspect
in representing sequential decision tasks (Boutilier, Dean, &
Hanks 1999).

A factored-state MDP is one whose states are repre-
sented as a vector of distinct components or features. Dy-
namic Bayesian networks (DBNs) and decision trees are
two popular formalisms for succinctly representing the state-
transition dynamics of factored-state MDPs, rather than enu-
merating such dynamics state by state (Guestrin, Patrascu,&
Schuurmans 2002). We adopt these powerful formalisms.

Algorithms for provably experience-efficient exploration
of MDPs have been generalized to factored-state MDPs
specified by DBNs. FactoredE3 (Kearns & Koller 1999)
and Factored Rmax (Guestrin, Patrascu, & Schuurmans
2002) are known to behave near optimally, with high prob-
ability, in all but a polynomial number of timesteps. Unfor-
tunately, these algorithms require as input a complete and
correct DBN structure specification (apart from the CPT pa-
rameters), which describes the exact structural dependencies
among state variables.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

There has been recent interest in learning the underlying
structure of a problem from data, especially within the RL
framework. Degris, Sigaud, & Wuillemin (2006) introduce a
model-based algorithm that incrementally builds a decision-
tree representation of state transitions. Their method, while
successful in challenging benchmark domains, incorporates
a very simplistic exploration technique (ǫ-greedy) that is
known to miss important opportunities for exploration. In
addition, it has no formal performance guarantees. Abbeel,
Koller, & Ng (2006) show that factor graphs, a generaliza-
tion of DBNs, can be learned in polynomial time and sample
complexities. Their method, which is not based on maxi-
mum likelihood estimation, assumes access to i.i.d. sam-
ples during separate training and testing phases. While our
approach is inspired by theirs, we address the RL prob-
lem, which requires dealing with highly dependent (non
i.i.d.) inputs, temporal considerations, and the exploration-
exploitation tradeoff.

Our paper makes two important contributions. First, we
integrate structure learning with focused exploration into a
complete RL algorithm. Second, we prove that our algo-
rithm uses its experience efficiently enough to provide for-
mal guarantees on the quality of its online behavior.

We deal almost solely with the problem of maximizing
experience, rather than computational, efficiency. Using su-
pervised learning terminology as a metaphor, we seek to
minimize sample rather than computational complexity. Our
algorithm relies on access to an MDP planner (value itera-
tion in our experiments), which is often very costly in terms
of computation. For a more practical implementation, faster
approximate planners could be employed. (For examples,
see the paper by Degris, Sigaud, & Wuillemin, 2006.)

In the next section, we discuss and formally describe
MDPs and factored-state MDPs. Next, we introduce two
common structures—dynamic Bayesian networks and deci-
sion trees—for succinct representation of the transition dy-
namics in factored-state MDPs. We formulate the general
“Structure-Learning Problem” as an online learning-theory
problem that involves prediction of the probability an out-
put of 1 will be observed for a specified input. We provide
the “Basic Structure-Learning Algorithm” as a concrete so-
lution to a simple instance of this problem. We prove that,
with high probability, the number of errors (refusals to pre-
dict) made by the algorithm is small (polynomial in the size

of the problem representation). In the following section,
we return to the reinforcement-learning problem and intro-
duce our new algorithm, SLF-Rmax. The algorithm uses
the solution to the online learning-theory problem just de-
scribed. We prove that the SLF-Rmax algorithm acts ac-
cording to a near-optimal policy on all but a small num-
ber of timesteps, with high probability. This bound is in-
herently linked, through reduction, with the corresponding
error bound of the online learning algorithm. We briefly dis-
cuss how the Basic Structure-Learning Algorithm can be ex-
tended and incorporated into SLF-Rmax to efficiently solve
the general structure-learning RL problem using either the
DBN or decision-tree models. Next, we perform an em-
pirical comparison of SLF-Rmax with Rmax and Factored
Rmax. These algorithms differ according to how much prior
knowledge they have—Rmax neither uses nor requires un-
derlying structure; SLF-Rmax is told there is structure but
must find it itself, and Factored Rmax requires complete
knowledge of the underlying structure. The performance of
the algorithms reflects the amount of knowledge available
in that the more background provided to the algorithm, the
faster it learns.

Background
This section introduces the Markov Decision Process (MDP)
notation used throughout the paper (Sutton & Barto 1998).
LetPS denote the set of all probability distributions over the
setS.

Definition 1 Afinite MDP M is a five tuple〈S,A, T,R, γ〉,
whereS is a finite set called the state space,A is a finite set
called the action space,T : S × A → PS is the transition
function,R : S × A → PR is the reward function, and
0 ≤ γ < 1 is a discount factor on the summed sequence of
rewards.

We call the elements ofS andA states and actions, respec-
tively, and defineS = |S| andA = |A|. We useT (s′|s, a)
to denote the transition probability of states′ in the distribu-
tion T (s, a) andR(s, a) to denote the expected value of the
distributionR(s, a).

A policy is any strategy for choosing actions. A station-
ary policy is one that produces an action based on only the
current state, ignoring the rest of the agent’s history. We
assume, without loss of generality, that rewards all lie in
the interval[0, 1]. For any policyπ, let V π

M (s) (Qπ
M (s, a))

denote the discounted, infinite-horizon value (action-value)
function forπ in M (which may be omitted from the nota-
tion) from states. Specifically, for any states and policyπ,
let rt denote thetth reward received after followingπ in M
starting from states. Then,V π

M (s) = E[
∑∞

t=0 γtrt|s, π].
The optimal policy is denotedπ∗ and has value functions
V ∗

M (s) andQ∗
M (s, a). Note that a policy cannot have a value

greater than1/(1− γ).

Factored-state MDPs
Definition 2 A factored-state MDP is an MDP where the
states are represented as vectors ofn componentsX =
{X1,X2, . . . ,Xn}. Each componentXi (called a state
variable or state factor) may be one of finitely many values

from the setD(Xi). In other words, each state can be writ-
ten in the formx = 〈x(1), . . . , x(n)〉, wherex(i) ∈ D(Xi).

The goal of factored representations is to succinctly repre-
sent large state spaces. The number of states of a factored-
state MDPM is exponentialin the numbern of state vari-
ables. To simplify the presentation, we assume the reward
function is known and does not need to be learned. We also
assume that each factor is binary valued (D(Xi) = {0, 1}).
All of our results have straightforward extensions to the case
of an unknown reward function and multi-valued factors.

Now, we make a mild independence assumption (that can
be relaxed in some settings).

Assumption 1 Let s, s′ be two states of a factored-state
MDP M , anda an action. The transition distribution func-
tion satisfies the following conditional independence condi-
tion:

T (s′|s, a) =
∏

i

Pi(s
′(i)|s, a), (1)

wherePi(·|s, a) is a discrete probability distribution over
D(Xi) for each factorXi and state-action pair(s, a). Said
another way, the DBNs have no synchronic arcs.

This assumption ensures that the values of each state vari-
able after a transition are determined independently of each
other, conditioned on the previous state and action.

The learning algorithms we consider are allowed to inter-
act with the environment only through one long trajectory
of (state, action, reward, next-state) tuples, governed bythe
system dynamics above. The transition function is not pro-
vided to the algorithm and must be learned from scratch.

Different Models
Factored-state MDPs are mainly useful when there are re-
strictions on the transition function that allows it to be rep-
resented by a data structure with reduced size. The corre-
sponding goal of a learning algorithm is to achieve a learning
rate that is polynomial in the representation size. Two differ-
ent representations, DBNs and decision trees, are discussed
in this section. As an example of the different expressive
powers of these representations, we refer the reader to the
taxi domain (Dietterich 2000), a grid world in which a taxi
has to pick up a passenger from one of four designated loca-
tions and drop it off at a different one. The state space can
be factored into 3 state variables: taxi position, passenger
location and passenger destination.

The dynamic Bayesian network (DBN) framework is one
model commonly used to describe the structure of factored-
state MDPs (Boutilier, Dean, & Hanks 1999). This model
restricts the set of factors that may influence the value of
a specified factor after a specified action. For example, it
is powerful enough to capture the following relationship in
the taxi domain: the factor that indicates the passenger lo-
cation depends only on itself (and not, say, the destination)
after a “move forward” command. Several learning meth-
ods have been developed for factored-state MDPs that re-
quire the DBNs structures themselves (but not the CPTs) as
input (Kearns & Koller 1999; Guestrin, Patrascu, & Schu-
urmans 2002). Our new algorithm operates when provided

only an upper bound on the max degree of the DBNs (equiv-
alently, an upper bound on the number of parents of any fac-
tor).

Although DBNs are quite useful, they fail to succinctly
represent certain dependencies. For example, in the taxi do-
main, the value of the passenger variable after a “drop off”
command is unchanged unless the taxi contains the passen-
ger and is in the destination. The DBN representation for
this dependency would indicate that the passenger variable
depends on all three state variables (position, passenger,des-
tination). On the other hand, a simple decision tree with two
internal nodes can test whether the passenger is in the taxi
and whether the taxi is in the destination. The decision-
tree representation is an order of magnitude smaller than
the DBN representation that uses tabular CPTs, in this case.
Here, we allow the nodes of the decision trees to be simple
decision rules of the formx(i) = z, wherei ∈ {1, . . . , n}
is a factor andz ∈ {0, 1} is a literal. Our algorithm has
the ability to learn in factored-state MDPs whose transition
functions are specified by decision trees. It needs only be
given a bound on the depth of the trees.

Structure-Learning Problem
As we will show, the structure-learning problem for MDPs
boils down to the following simple on-line learning-theory
problem:

Definition 3 (Structure-Learning Problem) On every step
t = 1, 2, . . . an input vectorxt ∈ {0, 1}n and output bit
yt ∈ {0, 1} is provided. The inputxt may be chosen in any
way that depends only on the previous inputs and outputs
(x1, y1), . . . , (xt, yt). The outputyt is chosen with prob-
ability P (xt), whereP (xt) depends only on the inputxt.
After observingxt and before observingyt, the learning al-
gorithm must make a prediction̂Pt(xt) ∈ [0, 1] ∪ {∅} of
P (xt). Furthermore, it should be able to provide a predic-
tion P̂t(x) for any input vectorx ∈ {0, 1}n.

We require that̂Pt(x) is a very accurate prediction of the
probability,P (x), thaty = 1 given inputx. If the algorithm
cannot make an accurate prediction, it must choose∅.

Definition 4 We define anadmissible algorithm for the
Structure-Learning Problem to be one that takes two in-
puts0 ≤ ǫ ≤ 1 and0 ≤ δ < 1 and, with probability at least
1− δ, satisfies the following conditions:

1. Whenever the algorithm predictŝPt(x) ∈ [0, 1], we have
that |P̂t(x)− P (x)| ≤ ǫ.

2. If P̂t(x) 6= ∅ thenP̂t′(x) 6= ∅ for all t′ > t.

3. The number of timestepst for which P̂t(xt) = ∅ is
bounded by some functionζ(ǫ, δ), polynomial inǫ and
δ.

The first condition above requires the algorithm to predict
accurately or refrain from predicting (by choosing∅). The
second condition states that once a valid (6= ∅) prediction is
made for inputx, then valid predictions must be provided for
x in the future. This condition can easily be met by simply
remembering all valid predictions. The functionζ(ǫ, δ) in

the third condition above is called thelearning complexity
of the algorithm and represents the number ofacknowledged
mistakes(predictions of∅ for a given inputxt) made by the
algorithm.

As stated, the Structure-Learning problem is solvable
only by exhaustive input enumeration (wait for each of the
2n input bit vectors to be seen a sufficient number of times).
However, if additional assumptions on the probability dis-
tributions Pt are made, then faster learning through gen-
eralization is possible. As one example of a problem that
allows generalization, suppose that the output probability
Pt depends only on thei∗th bit of the inputxt, where the
identity of the specially designated biti∗ is not provided to
the algorithm. We call this scenario theBasic Structure-
Learning Problem. Later, we will discuss how our solution
to this problem can be generalized to handle more than a
single designated bit and to deal with the various modeling
assumptions discussed in the previous section.

Basic Structure-Learning Algorithm
Our solution to the Basic Structure-Learning Problem is
specifically designed to be the simplest algorithm that eas-
ily generalizes to more realistic models. Intuitively, given
a new inputx, we must predictP (x), which depends only
on x(i∗), the i∗th component ofx. If the algorithm knew
which bit, i∗, mattered, it could easily estimateP (x) from
a few sample input/output pairs whose inputs agree withx
on bit i∗. Sincei∗ is initially unknown, our algorithm keeps
empirical counts on the number of times an observed output
bit of 1 occurs given an input whoseith andjth compo-
nents are fixed at some setting. It keeps these statistics for
all pairs of bit positions(i, j) and valid settings to these two
bit positions. This method is based on the observation that
the correct bit positioni∗ satisfiesP (·|x(i∗) = z1, x(j) =
z2) = P (·|x(i∗) = z1, x(j′) = z′2) for all other bit positions
j andj′ and bitsz1, z2, z

′
2. For a given inputx, the algo-

rithm searches for a bit position that approximately satisfies
this relationship. If one is found, a valid prediction is com-
puted based on past observations, and, if not, the algorithm
predicts∅.

Formally, our algorithm works as follows. It requires the
following parameters as input:

• Experience thresholdm ∈ Z
+.

• Precision parameterǫ1 ∈ R
+.

The parameters essentially quantify the algorithm’s re-
quired level of accuracy. The algorithm maintains the fol-
lowing local variables:

• Position-pair counts.For every pair of distinct bit posi-
tions (i, j) ∈ {1, . . . , n}2 with i 6= j and every pair of
bits z = (z1, z2) ∈ {0, 1}2, the quantityC(i, j, z) is the
minimum of m and the number of timestepst the algo-
rithm has experienced an input-output pair(xt, yt) with
xt(i) = z1 andxt(j) = z2.

• Next-bit counts. For every pair of distinct bit posi-
tions (i, j) ∈ {1, . . . , n}2 and every pair of bitsz =
(z1, z2) ∈ {0, 1}2, the quantityC(1|i, j, z) is the number
of timestepst during which the algorithm has experienced

an input-output pair(xt, yt) with xt(i) = z1, xt(j) = z2,
yt = 1, andCt(i, j, z) < m.

During timestept, the algorithm is provided an inputxt

and must make a prediction̂Pt(xt). It must also be able
to produce a prediction̂Pt(x) for any bit vectorx. For each
queried bit vectorx, our algorithm searches for a bit position
i such that the following conditions hold:

• For all bit positionsj 6= i, the algorithm has experienced
at leastm samples that agree withx in the ith andjth
component. Formally,C(i, j, (x(i), x(j))) = m for all
j 6= i.

• For all bit positionsj 6= i, the number of times the
agent has observed an output of1 after experiencing
an input that matchesx in the ith and jth compo-
nent (considering only the firstm such samples) lie
within an mǫ1 ball. Formally, |C(1|i, j, (x(i), x(j))) −
C(1|i, j′, (x(i), x(j′)))| ≤ mǫ1, for all j, j′.

If such a bit positioni is found, then the algorithm uses

P̂t(x) =
C(1|i, j, (x(i), x(j)))

C(i, j, (x(i), x(j))
=

C(1|i, j, (x(i), x(j)))

m

as its prediction (for anyj 6= i chosen arbitrarily). Other-
wise, the algorithm makes the null prediction∅.

Theorem 1 The inputsm ∝ ln(n/δ)
ǫ2 and ǫ1 ∝ ǫ can be

chosen so that the Basic Structure-Learning Algorithm de-
scribed in this section is an admissible learning algorithm

with ζ(ǫ, δ) ∝ n2 ln(n/δ)
ǫ2 .

Proof sketch: The proof has four steps. First, we con-
sider a fixed setting(z1, z2) ∈ {0, 1}2 to a pair of bit po-
sitions, (i∗,j) that includes the correct factor. Using Ho-
effding’s bound, we show that ifm independent samples of
the next bity are obtained from inputsx matching this set-
ting (x(i∗) = z1, x(j) = z2), then it is very unlikely for
the algorithm to learn an incorrect prediction ofy given this
fixed setting (formally|P (x)−C(1|i∗, j, (z1, z2))/m| ≤ ǫ1
for all x such thatx(i∗) = z1). Second, we observe
that even though each input can be chosen in an adver-
sarial manner (dependent only on the past inputs and out-
puts), the output is always chosen from a fixed distribu-
tion (dependent on only the input). Thus, the probabil-
ity of an incorrect prediction in the adversarial setting is
no greater than whenm independent samples are available.
Third, we use a union bound over the4n different pairs of
factors and binary settings to show that all predictions in-
volving a correct factor are accurate, with high probability.
The rest of the argument proceeds as follows. If a predic-
tion is made for inputx that is not∅, then it is equal to
C(1|i, j′, (x(i), x(j′)))/m for some factori according to the
conditions above. Suppose thati is not the correct factori∗.
The second condition (right above the theorem) implies that
|C(1|i, j′, (x(i), x(j′)))/m−C(1|i, i∗, (x(i), x(i∗)))/m| ≤
ǫ1. We have shown that with high probability,|P (x) −
C(1|i, i∗, (x(i), x(i∗)))/m| ≤ ǫ1. Combining these two
facts gives|C(1|i, j′, (x(i), x(j′)))/m − P (x)| ≤ 2ǫ1.

Thus, we chooseǫ1 = ǫ/2 to satisfy condition (1) of De-
finition 4. Finally, a simple counting argument and an appli-
cation of the pigeonhole principle yield the bound onζ(ǫ, δ).
2

The General SLF-Rmax Algorithm
In this section, we describe our new structure-learning al-
gorithm calledStructure-Learn-Factored-Rmax or SLF-
Rmax. First, we provide the intuition behind the algorithm,
then we define it formally. The algorithm is model based.
During each timestep, it acts according to a near-optimal
policy of its model, which it computes using any MDP plan-
ning algorithm. Since the true transition probabilities are
unknown, the algorithm must learn them from past expe-
rience. Each transition component,Pi(·|s, a), is estimated
from experience by an instance of any admissible learning
algorithm for the Structure-Learning problem described in
the previous section. Thus, SLF-Rmax usesnA instantia-
tions,Ai,a, of this algorithm, one for each factori and ac-
tion a. When viewed fromAi,a’s perspective (as in the last
section), each input vectorx is a state and each output bit
y is the ith bit position of the next state reached after tak-
ing actiona from x. If any estimated transition component
P̂i(·|s, a) is ∅, meaning that the algorithm has no reason-
able estimate ofPi(·|s, a), then the value of taking actiona
from states in SLF-Rmax’s model is the maximum possi-
ble (1/(1 − γ)). Similar to the Rmax algorithm (Brafman
& Tennenholtz 2002), thisexploration bonusis an imagi-
nary reward for experiencing a state-action pair whose next-
state distribution involves an inaccurately-modeled transi-
tion component.

Formally, SLF-Rmax chooses an action from states that
maximizes its current action-value estimatesQ(s, a), which
are computed by solving the following set of equations:

Q(s, a) = 1/(1− γ), if ∃i, P̂i(·|s, a) = ∅ (2)

Q(s, a) = R(s, a) + γ
∑

s′

T̂ (s′|s, a)max
a′

Q(s′, a′),

otherwise.

In Equation 2, we have used̂T (s′|s, a) =
∏

i P̂i(s
′(i)|s, a).

Pseudo-code for the SLF-Rmax algorithm is provided in Al-
gorithm 1.

Theoretical Analysis
We can prove that when given an admissible learning al-
gorithm for the Structure-Learning problem, SLF-Rmax be-
haves near-optimally on all but a few timesteps, with high
probability. The result is comparable with the standard
polynomial-time guarantees of RL algorithms (Kearns &
Singh 2002; Kakade 2003; Brafman & Tennenholtz 2002).

Theorem 2 Suppose that0 ≤ ǫ < 1
1−γ and0 ≤ δ < 1 are

two real numbers andM = 〈S,A, T,R, γ〉 is any factored-
state MDP. Letn be the number of state factors. Suppose
that StructLearn is an admissible learning algorithm for
the Basic Structure-Learning Problem that is used by SLF-
Rmax and has learning complexityζ(ǫ, δ). LetAt denote

Algorithm 1 SLF-Rmax Algorithm
0: Inputs: n, A, R, γ, ǫ, δ, admissible learning algorithm
StructLearn

1: for all factorsi ∈ {1, . . . , n} and actionsa ∈ A do
2: Initialize a new instantiation ofStructLearn, de-

notedAi,a, with inputsǫ(1− γ)2/n, and δ
nk , respec-

tively (for ǫ andδ in Definition 4).
3: end for
4: for all (s, a) ∈ S × A do
5: Q(s, a)← 1/(1− γ) // Action-value estimates
6: end for
7: for t = 1, 2, 3, · · · do
8: Let s denote the state at timet.
9: Choose actiona := argmaxa′∈A Q(s, a′).

10: Let s′ be the next state after executing actiona.
11: for all factorsi ∈ {1, . . . , n} do
12: Present input-output pair(s, s′(i)) toAi,a.
13: end for
14: Update action-value estimates by solving Equation 2.
15: end for

SLF-Rmax’s policy at timet andst denote the state at time
t. With probability at least1− δ, V At

M (st) ≥ V ∗
M (st)− ǫ is

true for all but

O

(

nA

ǫ(1− γ)2
ζ

(

ǫ(1− γ)2

n
,

δ

nA

)

ln
1

δ
ln

1

ǫ(1− γ)

)

timestepst.

SLF-Rmax With Different Modeling Assumptions
The general SLF-Rmax algorithm requires, as input, an ad-
missible algorithm for the Structure-Learning problem. For
different structural assumptions, different admissible algo-
rithms can be formulated. In a previous section, we pro-
vided an algorithm, the Basic Structure-Learning Algorithm,
which is admissible under the structural assumption that the
probability that the next output bit is 1 depends on a single
input bit. This algorithm can be directly incorporated into
the SLF-Rmax algorithm for use in factored-state domains
whose transition functions are described by decision trees
with depth 1. Similarly, it could be used in factored-state
domains whose transition functions are described by DBNs
with maximum degree 1 (one parent per next-state factor).

In most realistic domains described by decision tress or
DBNs, the maximum depth or maximum degree, respec-
tively, will be larger than one but often much smaller thann
(the number of factors). The Basic Structure-Learning algo-
rithm can be extended to accommodate this situation. The
extended version requires a bound,k, on either the maxi-
mum depth of the decision trees or the maximum degree of
the DBNs. The main idea of the extension is to note that the
true probability associated with the next bit is dependent on
some unknownelement(for instance, a decision-tree leaf or
some setting to the parents in a DBN). The algorithm enu-
merates all possible elements and keeps statistics (empirical
probability that the next bit is 1) for all possible pairs of
elements. In the case of the Basic Structure-Learning algo-
rithm, the elements are the2n settings to each of then bits.

More generally, there are2k
(

n
k

)

elements correspond to sets
of k input positions and binary strings (settings) over them.

Using the extension of the Basic Structure-Learning algo-
rithm in conjunction with SLF-Rmax, we have the follow-
ing corollary to Theorem 2. It says that the number of times
the algorithm fails to behave near-optimally is bounded by
a polynomial in the representation sizewhen k is a fixed
constant. This exponential dependence onk is unavoidable
and appears in similar theoretical results for structure learn-
ing (Abbeel, Koller, & Ng 2006).

Corollary 1 Suppose that0 ≤ ǫ < 1
1−γ and0 ≤ δ < 1 are

two real numbers andM = 〈S,A, T,R, γ〉 is any factored-
state MDP whose transition function is described by depth-
k decision trees (or DBNs with maximum degreek). Let
n be the number of state factors. There exists an admissi-
ble learning algorithmStructLearn so that if SLF-Rmax
is executed onM usingStructLearn, then the following
holds. LetAt denote SLF-Rmax’s policy at timet and st

denote the state at timet. With probability at least1 − δ,
V At

M (st) ≥ V ∗
M (st)− ǫ is true for all but

O

(

n3+2kAk ln (nA/δ) ln 1
δ ln 1

ǫ(1−γ)

ǫ3(1− γ)6

)

timestepst.

Proof sketch: The proof of Theorem 2 utilizes an existing
theoretical framework (Strehl, Li, & Littman 2006) and is a
straightforward extension of the proof for the corresponding
result about Rmax (Kakade 2003). Although there is not
enough room here, please see our technical report for full
details.2

Experiments
In this section, we present a small-scale empirical evalua-
tion that provides a proof of concept and demonstrates how
our approach can exploit weak background knowledge. We
compare the cumulative reward of three RL algorithms over
time. Each is designed to accept different kinds of input:
Factored Rmax requires the entire DBN structure; SLF-
Rmax requires only an upper bound on the degree of the
underlying DBN; and Rmax uses none of the available struc-
tural information. The three algorithms are demonstrated on
a simplified Stock-Trading domain.

Stock-Trading domain The domain simulates a stock
market composed of a set ofeconomy sectors, each asso-
ciated with a set of stocks. The size of the domain is de-
fined by the number of sectors (e) and the number of stocks
per sector (o). The domain consists of two types of bi-
nary variables:e sector ownership variablesrepresenting
whether or not the agent owns a sector, ande× o stock vari-
ables, representing whether each of the individual stocks
is rising or falling. The probability that any given stock
will be rising at timet + 1 is determined by a combina-
tion of the values of all stocks in its sector at timet, ac-
cording to the formulaP (stock rising) = 0.1 + 0.8 ×
(#stocks in sector rising at time t/#stocks in sector).
The dynamics of these transitions can thus be modeled by

Own
Sector 1

stock
1.1

stock
1.2

Own
Sector 1

stock
1.1

stock
1.2

Own
Sector 2

stock
2.1

stock
2.2

Own
Sector 2

stock
2.1

stock
2.2

Own
Sector 3

stock
3.1

stock
3.2

Own
Sector 3

stock
3.1

stock
3.2

Figure 1: Dynamic Bayesian network representation of the
transition dynamics of a3 × 2 Stock-Trading environment.
The large nodes represent stock ownership variables and the
smaller nodes represent stock variables.

a DBN with at mosto parents per state variable. Figure 1
shows a DBN structure for a sample (e×o = 3×2) domain.

The agent gets a reward of+1 for each stock that is rising
in a sector that it owns, and−1 for each stock that is not
rising. For stocks in sectors that the agent does not own, the
reward is0 regardless of whether they are rising or dropping.
The maximum possible reward in a timestep would thus be
e× o, which occurs when the agent owns all sectors and all
stocks are rising. The agent’s actions are to buy/sell sectors
or simply do nothing. To summarize, in the Stock-Trading
domain withe = 3 ando = 2, there aren = 9 factors,
S = 29 = 512 states, andA = 4 actions. We executed
Factored Rmax and SLF-Rmax for4000 steps, and Rmax,
which required more steps to converge, for14000 steps in
the domain. A parameter search over a coarse grid was con-
ducted for each algorithm and the best setting was selected
(m = 10 for Factored Rmax,m = 20 for the other two algo-
rithms;ǫ1 = 0.2 in all cases). Each experiment was repeated
20 times and the results averaged.

Results Figure 2 shows the reward accumulated by each
agent per step of experience. As expected, the fastest al-
gorithm to converge to a near-optimal policy and maximize
reward is Factored Rmax, which uses the most prior knowl-
edge. Our new algorithm, SLF-Rmax, converges to a near-
optimal policy after only a small number of additional steps,
presumably needed to infer the underlying structure. Rmax,
which uses the least amount of prior knowledge, eventually
found an adequate policy but only after many steps.

Conclusion

SLF-Rmax is the first provably experience-efficient RL al-
gorithm to automatically learn and exploit the structure in
factored-state MDPs. Future work includes making the al-
gorithm more practical, by integrating it with approximate
planning methods that would enable the solution of larger
problems.

Acknowledgments

This material is based upon work supported by NSF ITR
0325281, IIS-0329153, and DARPA HR0011-04-1-0050.

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70

A
cc

um
ul

at
ed

 R
ew

ar
d

Number of steps (x 200)

Factored-Rmax
SLF-Rmax

Rmax

Figure 2: Cumulative reward on each timestep for the three
algorithms: Factored Rmax (structure given), SLF-Rmax
(structure learned) and Rmax (no structure).

References
Abbeel, P.; Koller, D.; and Ng, A. Y. 2006. Learning factor graphs
in polynomial time and sample complexity.JMLR.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research11:1–94.

Brafman, R. I., and Tennenholtz, M. 2002. R-MAX—a general
polynomial time algorithm for near-optimal reinforcement learn-
ing. Journal of Machine Learning Research3:213–231.

Degris, T.; Sigaud, O.; and Wuillemin, P.-H. 2006. Learning the
structure of factored Markov decision processes in reinforcement
learning problems. InICML-06: Proceedings of the 23rd inter-
national conference on Machine learning, 257–264.

Dietterich, T. G. 2000. Hierarchical reinforcement learning with
the MAXQ value function decomposition.Journal of Artificial
Intelligence Research13:227–303.

Guestrin, C.; Patrascu, R.; and Schuurmans, D. 2002. Algorithm-
directed exploration for model-based reinforcement learning in
factored MDPs. InProceedings of the International Conference
on Machine Learning, 235–242.

Kakade, S. M. 2003.On the Sample Complexity of Reinforce-
ment Learning. Ph.D. Dissertation, Gatsby Computational Neu-
roscience Unit, University College London.

Kearns, M. J., and Koller, D. 1999. Efficient reinforcement learn-
ing in factored MDPs. InProceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI), 740–747.

Kearns, M. J., and Singh, S. P. 2002. Near-optimal reinforcement
learning in polynomial time. Machine Learning49(2–3):209–
232.

Strehl, A. L.; Li, L.; and Littman, M. L. 2006. Incremental model-
based learners with formal learning-time guarantees. InUAI-06:
Proceedings of the 22nd conference on Uncertainty in Artificial
Intelligence, 485–493.

Sutton, R. S., and Barto, A. G. 1998.Reinforcement Learning:
An Introduction. The MIT Press.

