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Abstract

This paper develops a generalized appren-
ticeship learning protocol for reinforcement-
learning agents with access to a teacher who
provides policy traces (transition and reward
observations). We characterize sufficient con-
ditions of the underlying models for efficient
apprenticeship learning and link this criteria
to two established learnability classes (KWIK
and Mistake Bound). We then construct effi-
cient apprenticeship-learning algorithms in a
number of domains, including two types of re-
lational MDPs. We instantiate our approach
in a software agent and a robot agent that
learn effectively from a human teacher.

1. Introduction

Teachers unquestionably increase the speed and ef-
ficacy of learning in humans. Yet in the field
of reinforcement learning (RL), almost all learning
agents gain experience solely by interaction with their
environment—teachers are not in the loop. This
work addresses this disconnect by proposing a gener-
alized protocol for apprenticeship learning within the
reinforcement-learning paradigm, characterizing suffi-
cient conditions for efficient apprenticeship learning
that cover a wide swath of important AI domains, and
showing there is a potentially exponential improve-
ment in sample complexity when an agent can interact
with a teacher instead of learning on its own.

The idea of integrating a teacher into the learning pro-
cess has been proposed in several different forms. For
instance, in the early computational learning theory
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literature, equivalence queries (Angluin, 1988) played
the role of teacher and were shown to increase the
class of learnable concepts in the supervised learn-
ing setting. In this work, we expand the appren-
ticeship protocol of Abbeel & Ng (2005) to cover a
wider array of model classes. We consider a teacher
with a policy πT that can deliver a trace, a sequence
of states, actions, and rewards obtained by execut-
ing πT from a start state, to the learning agent after
seeing it behaving suboptimally. We note that this
scenario is different from inverse reinforcement learn-
ing (Abbeel & Ng, 2004), where the reward function
is inferred from sequences of states and actions. In-
stead, our agents see the actual rewards and transi-
tions induced by the teacher’s policy and act to try to
maximize this observable reward function.

We characterize a class of reinforcement-learning envi-
ronments for which an agent can guarantee that only
a polynomial number of example traces are needed to
act near-optimally. Specifically, this class includes all
KWIK-learnable domains from the autonomous case
and all deterministic domains from the Mistake Bound
(MB) learning class, a set that contains many models
that thwart autonomous agents. These results gen-
eralize earlier theoretical results in a handful of RL
representations, including flat MDPs, linear MDPs,
Stochastic STRIPS, and deterministic OOMDPs.

2. Terminology

In this section, we propose a protocol for apprentice-
ship learning in RL domains and a supervised learning
framework that will allow us to study the efficiency of
such learners.

2.1. Reinforcement Learning

A reinforcement-learning (Sutton & Barto, 1998)
agent interacts with an environment described by
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Algorithm 1 The Apprenticeship-Learning Protocol

The agent starts with S, A and γ, a time-cap H and
has access to episodic environment E

The teacher has policy πT .
for each new start state s0 from E do

t = 0
while The episode has not ended and t < H do

The agent chooses at.
〈st+1, rt〉 = E.progress(st, at)
t = t + 1

if the teacher believes it has a better policy for
that episode then

The teacher provides a trace τ starting from s0.

a Markov Decision Process (MDP), which is a 5-
tuple 〈S, A, T , R, γ〉 with states S, actions A, tran-
sition functions T : S × A 7→ Pr[S], reward func-
tion R : S × A 7→ [Rmin, Rmax], and discount fac-
tor γ. An agent’s deterministic1 policy π : S 7→ A

induces a value function over the state space, de-
fined by the Bellman Equations: Qπ(s, a) = R(s, a) +
γ

∑
s′ T (s, a, s′)Qπ(s′, π(s′)) and V π(s) = Qπ(s, π(s)).

An optimal policy π∗ for an MDP is a policy such that
∀s, V ∗(s) = V π∗(s) ≥ V π′

(s), ∀π′. The goal of a stan-
dard (autonomous) reinforcement-learning agent is to
achieve behavior close to this optimal value from its
own experience sampling T and R on each step.

2.2. Generalized Apprenticeship Learning

This paper considers a paradigm where the agent’s ex-
perience is augmented with experience produced by
a teacher and the criterion is to find a policy whose
value function is nearly as good as, or better than, the
value function induced by the teacher’s policy. For-
mally, we define the Apprenticeship Learning Protocol
for episodic domains where each episode has a length of
at most H = Poly(|M |, |A|, Rmax,

1

1−γ
) in Algorithm 1.

Here, |M | is a measure of environment complexity, de-
scribed later.

Intuitively, the agent is allowed to interact with the
environment, but, unlike standard RL, at the end of an
episode, the teacher can provide the agent with a trace
of its own behavior starting from the original start
state. The criteria the teacher uses to decide when
to send a trace is left general here, but one specific
test of value, which we use in our experiments, is for
the teacher to provide a trace if at any time t in the
episode, QπT (st, at) < QπT (st, πT (st)) − ǫ. That is,
the agent chooses an action that appears worse than

1The results of this paper can also be extended to the
case where the teacher and learner use stochastic policies.

the teacher’s choice in some state. Traces are of the
form: τ = (s0, a0, r0), ...(st, at, rt), ...(sg , rg) where s0

is the initial state, and sg is a terminal (goal) state or
some other state if the H cutoff is reached. Notice that
the trajectory begins before (or at) the point where
the agent first acted sub-optimally, and may not even
contain the state in which the agent made its mistake.

Since the teacher’s policy may not be optimal, this
trace could potentially prescribe behavior worse than
the agent’s policy. We distinguish between these traces
and their more helpful brethren with the following def-
inition.

Definition 1. A valid trace (with accuracy ǫ) is a
trace supplied by a teacher executing policy πT deliv-
ered to an agent who just executed policy πA starting
from state s0 such that V πT (s0) − ǫ > V πA(s0).

This allows agents to outperform their teacher without
being punished for it. With deterministic policies, this
definition means that at no time in a valid trace does
the teacher prescribe an action that is much worse than
any of the actions the agent used in that state. Note
that when the teacher enacts optimal behavior (πT =
π∗), only valid traces will be provided.

We now introduce a teacher into the learning loop in
a way that allows us to characterize the efficiency of
learning analogous to the way the PAC-MDP frame-
work (Strehl et al., 2009) has been used to character-
ize efficient behavior in the autonomous setting. We
define PAC-MDP-Trace learning as follows:

Definition 2. An RL agent is said to be PAC-
MDP-Trace if, given accuracy parameters ǫ and δ,
and following the protocol outlined in Algorithm 1,
the number of valid traces (with accuracy ǫ) re-
ceived by the agent over its lifetime is bounded by
Poly(|M |, |A|, Rmax,

1

1−γ
) with probability 1− δ, where

|M | measures the complexity of the MDP’s represen-
tation, specifically the description of T and R.

2.3. Frameworks for Learning Models

In this section, we introduce a class of dynamics where
PAC-MDP-Trace behavior can be induced. In au-
tonomous reinforcement learning, the recent develop-
ment of the KWIK (Li et al., 2008) or “Knows What
It Knows” framework has unified the analysis of mod-
els that can be efficiently learned. The KWIK-learning
protocol consists of an agent seeing an infinite stream
of inputs xt ∈ X . For every input, the agent has the
choice of predicting a label (ŷt ∈ Y ) or admitting ⊥
(“I don’t know”). If the agent predicts ⊥, it sees a
noisy observation zt of the true label. A hypothesis h∗

in class H is said to be KWIK learnable if, with prob-
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ability 1 − δ, two conditions are met. (1) Every time
the agent predicts ŷt 6= ⊥, ||ŷt − h∗(xt)|| ≤ ǫ. (2) The
number of times ŷt = ⊥ is bounded by a polynomial
function of the problem description.

In autonomous reinforcement-learning, if T and R are
efficiently KWIK learnable, efficient behavior can be
achieved by optimistically filling in the ⊥ predictions.
These results cover a large number of models com-
mon to autonomous reinforcement learning, includ-
ing flat MDPs and DBNs (Li et al., 2008). However,
several relevant and intuitively appealing classes are
not KWIK learnable. For instance, conjunctions of n

terms are not KWIK learnable (see Section 4.2). An
environment with a “combination lock” of n tumblers
that need to be set to the correct digits for a high
reward action (“unlock”) to be effective, can require
an exponential number of suboptimal steps. But, in
the trace setting, learning to open such a lock is sim-
ple: the agent only needs the teacher to supply a single
trace to learn the combination! Thus, there are clearly
models that are learnable in the apprenticeship setting
that are not autonomously learnable.

Prior work (Angluin, 1988) has established a link be-
tween teachable hypothesis classes and the mistake
bound (MB) framework (Littlestone, 1987). However,
both of these considered only the prediction setting
(not sequential decision making). The MB learning
protocol for model learning is essentially the same as
the KWIK protocol except for three changes. (1) In
MB, there is no ⊥ prediction. The agent must always
predict a ŷt ∈ {0, 1} and receives a true label when it
is wrong. (2) MB is only defined for deterministic hy-
pothesis classes, so instead of zt, the agent will actually
see the true label. (3) Efficiency is characterized by a
polynomial bound on the number of mistakes made. It
follows (Li et al., 2008) that any efficient KWIK learn-
ing algorithm for a deterministic hypothesis class can
become an efficient algorithm for MB by simply re-
placing all ⊥ labels with an arbitrary element from
Y . We now introduce the following related criteria,
called a mistake-bounded predictor (MBP) and will
later show that if T and R for an MDP are learnable
in this framework, it is PAC-MDP-Trace learnable.

Definition 3. A mistake-bounded predictor

(MBP) is an online learner with accuracy parameters
ǫ and δ that takes a stream of inputs from set X and
maps them to outputs from a set Y . After predicting
any ŷt, the learner receives a (perhaps noisy) label zt

produced by an unknown function from a known hy-
pothesis class. An MBP must make no more than a
polynomial (in 1

ǫ
, 1

δ
, and some measure of the com-

plexity of the hypothesis class) number of mistakes with
probability 1 − δ. Here, a mistake occurs if, for input

xt, the learner produces ŷt and ||h∗(xt) − ŷt|| > ǫ,
where h∗ is the unknown function to be learned.

Like KWIK, MBP observations can be noisy, and like
MB, the learner is allowed to make a certain number
of mistaken predictions. In fact, we can formalize the
relationships with the following propositions.

Proposition 1. Any hypothesis class that is KWIK
or MB learnable is MBP learnable.

Proof. A KWIK learner can be used in its standard
form, except that whenever it predicts ⊥, the MBP
agent should pick a ŷt ∈ Y arbitrarily. Also, the un-
derlying KWIK learner should not be shown new labels
when it does not predict ⊥, though the “outer” MBP
agent does receive them.

MB learners are defined for deterministic hypothesis
classes, so we can assume no noisy observations exist.
In this setting, the MB and MBP protocols line up.

We can combine MBP learners in several ways and still
preserve the MBP properties. For instance, consider
the following MB-partitioned class.

Proposition 2. Consider two “low-level” MBP-
learnable classes C0 and C1 with the input space X

and disjoint output sets Y0 and Y1, respectively. Con-
sider a “high-level” MB-learnable class C mapping X

to {0, 1}. The composition of these classes where the
output of the class C learner is used to select which
low-level MBP class to use (if the output of the high-
level learner is i, use class Ci) is MBP-learnable.

Proof. On input x, get a prediction i from the C

learner. Then, query the Ci learner and report its
response as the solution. Observe y. Define i such
that y ∈ Yi, then train C with (x, i) and Ci with (x, y).
By construction, all learners get the appropriate train-
ing data and will individually make a small number of
mistakes. When they make accurate predictions, the
overall learner is accurate.

As an example, consider a factored MDP with a reward
function defined as follows. If a predetermined con-
junction cR over all n factors is false, then the agent re-
ceives reward Rmin < 0 and otherwise it gets a reward
drawn from a distribution over [0, Rmax]. Given that
information (but not cR or the distribution), the re-
ward function can be learned using an MB conjunction
learner and a KWIK learner for the distribution when
the conjunction is true, because the cases are always
discernible. In contrast, a class where the distribution
when the conjunction is true was over [Rmin, Rmax] is
not covered under this case because the outputs sets of
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the learning problems overlap (making it unclear how
to solve the top-level learner).

Several simpler combinations of MBP learners also
preserve the MBP properties. These include input-
partition, where low level learners are chosen based
on some known function of X (a degenerate case of
MB-partition without the “high-level” MB learning);
union, where the outputs of several MBP learners with
the same input sets give predictions (one can simply
use the “low-level” learner who has made the fewest
mistakes and give samples to all the learners); and
cross-product, where learners with disjoint inputs and
outputs have their predictions combined. These forms
of combination have proven useful in building KWIK
learners for autonomous RL (Li et al., 2008) and we
use MB-partition in Section 4.3.

3. Efficiency Results

In this section, we link the class of MBP learnable
functions to efficient PAC-MDP-Trace learning agents.

3.1. MBP-Agent and Efficient Apprenticeship

Learning

We introduce a model-based RL algorithm (MBP-
Agent, Algorithm 2) for the apprenticeship setting
that uses an MBP learner as a module for learning
the dynamics of the environment. Notice that be-
cause MBP learners never acknowledge uncertainty,
our algorithm for the apprenticeship setting believes
whatever its model tells it (which could be mistaken).
While autonomous learners run the risk of failing to
explore under such conditions, the MBP-Agent can in-
stead rely on its teacher to provide experience in more
“helpful” parts of the state space, since its goal is sim-
ply to do at least as well as the teacher. Thus, even
model learners that default to pessimistic predictions
when little data is available (as we see in later sections
and as are used in our experiments), can be used suc-
cessfully in the MBP-Agent algorithm. Algorithm 2
has the following property.

Theorem 1. An MBP-learner is PAC-MDP-Trace for
any domain where the transitions and rewards are ef-
ficiently MBP learnable.

The heart of the argument is an extension of the
standard Explore-Exploit lemma, we call the Explore-
Exploit-Explain Lemma.

Lemma 1. On each trial, we can define a set of known
state,action (〈s, a〉) pairs as the ones where the MBP
currently predicts transitions accurately. One of these
outcomes occurs: (1) The agent will encounter an un-
known 〈s, a〉 (explore) with high probability. (2) The

Algorithm 2 MBP-Agent

The agent knows ǫ, δ, and A and has access to the
environment E, teacher T , and a planner P .
Initialize MBP learners LT (ǫT , δ) and LR(ǫR, δ)
for each episode do

s0 = E.startState
while episode not finished do

at = P.getPlan(st, LT , LR).
〈rt, st+1〉 = E.executeAct(at)
LT .Update(st, at, st+1); LR.Update(st, at, rt)

if T provides trace τ starting from s0 then

∀〈s, a, r, s′〉 Update LT (s, a, s′) and LR(s, a, r)

agent will execute a policy πt whose value is better
or not much worse than the teacher’s policy πT (ex-
ploit). (3) The teacher’s trace will encounter an un-
known 〈s, a〉 (explain) with high probability.

Lemma 1 proves Theorem 1 because MBP can only
make a polynomial number of mistakes, meaning cases
(1) and (3) can only happen a polynomial number of
times. Below is a sketch of the lemma’s proof.

Proof. The quantity V πT (s0) is the value, in the real
environment, of the teacher’s policy and V πA(s0) is
the value, in the real environment, of the agent’s cur-
rent policy. Analogously, we can define UπT (s0) as
the value, in the agent’s learned MDP, of the teacher’s
policy and UπA(s0) is the value, in the agent’s learned
MDP, of the agent’s policy.

First, note that with proper settings of ǫT and ǫR

we can guarantee that ||V π − Uπ|| ≤ ǫ
2
. Then, by

any of several simulation lemmata, such as Lemma 12
from Strehl et al. (2009), if |UπA(s0) − V πA(s0)| > ǫ

2
,

then, with high probability, case (1), explore, will hap-
pen. That is because executing πA in the real environ-
ment will produce a sample of V πA(s0) and the only
way it can be different from the agent’s conception
of (UπA(s0)), is if an unknown 〈s, a〉 is reached with
sufficiently high probability.

Next, we consider the case where UπA(s0) and V πA(s0)
are within ǫ

2
of one another. If V πA(s0) ≥ V πT (s0)−ǫ,

that means πA is nearly optimal relative to πT , and
case (2), exploit, happens.

Finally, we consider the case where UπA(s0) and
V πA(s0) are within ǫ

2
of one another and V πA(s0) <

V πT (s0) − ǫ. Note that UπA(s0) ≥ UπT (s0) (be-
cause πA was chosen as optimal). Chaining inequal-
ities, we have UπT (s0) ≤ UπA(s0) ≤ V πA(s0) + ǫ

2
<

V πT (s0) −
ǫ
2
. We’re now in a position to use a simu-

lation lemma again: since |UπT (s0) − V πT (s0)| > ǫ
2

,
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then, with high probability, case (3), explain, will very
likely happen when the teacher generates a trace.

In summary, KWIK-learnable models can be efficiently
learned in the autonomous RL case, but MB learn-
ing is insufficient for exploration. MBP covers both
of these classes, and is sufficient for efficient appren-
ticeship learning, so models that were autonomously
learnable as well as many models that were formerly
intractable (the MB class), are all efficiently learnable
in the apprenticeship setting. As an example, the com-
bination lock described earlier could require an expo-
nential number of tries using a KWIK learner in the
autonomous case, and MB is insufficient in the au-
tonomous case because it does not keep track of what
combinations have been tried. But in the apprentice-
ship setting, the MBP-Agent can get the positive ex-
amples it needs (see Section 4.2) and will succeed with
at most n (one for each irrelevant tumbler) valid traces.

4. Example Domain Classes

We now present upper bounds and constructive algo-
rithms for efficient apprenticeship learning in several
widely used RL representations. We note that while
some of these classes are efficiently learnable in the
autonomous case, others are provably intractable.

4.1. Flat and Linear MDPs

In the autonomous setting, flat MDPs (where the
states are simply propositional members of a set S) can

be learned with a KWIK bound of Õ(S2A
ǫ2

) (Li et al.,
2008). Following Theorem 1, this gives us a polyno-
mial PAC-MDP-Trace bound, a result that is directly
comparable to the apprenticeship-leaning result under
the earlier protocol described by Abbeel & Ng (2005).
One difference between the two protocols is that theirs
requires all traces to be given before learning starts and
our learners are oblivious to when they have met their
goal of matching or exceeding the teacher.

The same work considered apprenticeship learning of
linear dynamics. We note that these domains are also
covered by Theorem 1 as recent results on KWIK Lin-
ear Regression (Walsh et al., 2009) have shown that
such n-dimensional MDPs are again KWIK learnable

with a bound of Õ(n3

ǫ4
).

4.2. Classical MB Results

While the results above are interesting, flat and linear
MDPs are known to be efficiently learnable in the au-
tonomous case. We now describe two MBP-learnable
classes that we will use as the backbone of RL al-

gorithms for relational MDPs, some of which are in-
tractable in the autonomous case.

As mentioned earlier, KWIK and MB are separable
when learning monotone conjunctions2 over n literals
when the number of literals relevant to the conjunc-
tion (nR) can be as many as n. In KWIK, conjunc-
tions of size k = O(1) are efficiently learnable: The
system simply enumerates all nk conjunctions of this
size, predicts ⊥ unless all the hypotheses agree on a
prediction, and eliminates wrong hypotheses. How-
ever, when the conjunction is of size O(n), the O(2n)
hypothesis space can result in an exponential number
of ⊥ predictions. This situation arises because nega-
tive examples are highly uninformative. In the combi-
nation lock, for example, the agent has no idea which
of the 2n settings will allow the lock to be unlocked,
so it must predict ⊥ at every new combination. Note
though that if it does see this one positive example it
will have learned the correct combination.

In contrast, learners in the MB setting can effi-
ciently learn conjunctions by exploiting this asymme-
try. Specifically, an MB agent for conjunction learning
(detailed in (Kearns & Vazirani, 1994)) can maintain
a set of literals lj ∈ LH where lj = 1 for every positive
example it has seen before. If ∀(lj ∈ LH), lj = 1 in
xt, the agent correctly predicts true, otherwise it de-
faults to false. By using such defaults, which KWIK
agents cannot, and by only counting the highly in-
formative positive samples, each of which subtracts at
least one literal from LH , polynomial sample efficiency
is achieved.

Another class that is MB learnable is the class of
k-term-DNF (disjunctive normal form of k = O(1)
terms). k-term-DNF are of the form (li ∧ lj ∧ ...)1 ∨
...∨ (...∧ ...)k , that is, a disjunction of k terms, each of
at most size n. This class of functions is known to be
MB learnable (Kearns & Vazirani, 1994) by creating
a conjunction of new literals, each representing a dis-
junction of k original literals (for k = 3 we would have
lijm = li ∨ lj ∨ lm), and then using the conjunction
learning algorithm described above.

4.3. Learning Stochastic STRIPS Operators

We now describe a relational MDP class that, when
given some background information about the environ-
ment’s possible dynamics, can be MBP learned using
MB-partition with an MB conjunction learner, and a
KWIK learner. The class is Stochastic STRIPS with
rewards (Walsh et al., 2009), where states are com-

2The results extend to the non-monotone setting using
the standard method of including all negated literals.
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PutDown(B, To): Reward = −1
PRE: Holding(B) ∧ Clear(To) ∧ Block(To)
ω1(p1 = 0.8):
ADD: On(B, To) , EmptyHand()
DEL: Holding(B) Clear(To)
ω2(p2 = 0.2):
ADD: ∅ DEL: ∅

Table 1. A Stochastic STRIPS rule in Blocks World.

prised of objects O, and predicates P (e.g. On(b, c)).
Actions a ∈ A (see Table 1) are parameterized and
their dynamics are described by two parts. First, a
pre-condition ca, which is a conjunction (over P and
the action’s parameters) that determines whether the
action will actually execute in the current state or re-
turn a unique “failure” signal. The second part of
an action’s description is a set of possible effects Ωa,
where each ωa

i is a pair of “Add” and “Delete” lists
describing the changes to the current state and has
an associated probability pa

i ∈ Πa. Previous work
has established that while the probabilities of these
outcomes cannot be efficiently learned by traditional
“counting” methods, they can be KWIK learned using
a linear regression technique (Walsh et al., 2009). This
approach is necessary because sometimes the difference
between states st and st+1 are explainable by several
of the effects. Given this result and the conjunction
learning algorithm above, we have the following result:

Proposition 3. Stochastic STRIPS operators are
PAC-MDP-Trace learnable if the agent is given the set
of possible effects (Ωa, but not Πa) beforehand by using
Algorithm 2 and MB-partitioning between an MB con-
junction learner (for the preconditions) and a KWIK-
LR learner (for the effect probabilities).

Proof. Each transition sample is either a “failure” (ca

is false) or a transition that returns a next state
s′ (without a failure signal), so the output spaces
are disjoint as required by MB-partition. We use a
conjunction learner for each action (MB-CON a) to
predict whether the preconditions of a grounding of
that action hold. As in earlier work on determin-
istic STRIPS (Walsh & Littman, 2008), these learn-
ers produce a pessimistic version of the preconditions,
the most specific hypothesis possible on the conjunc-
tion. Thus, unless a series of actions exists that, with
some probability, lead to the goal without failure of
these pessimistic preconditions, the agent will request
a trace by acting randomly for H steps (or ending the
episode if possible). Each τ received because of such a
request or some other suboptimal policy (with respect
to the teacher) will provide positive examples of the

MoveRight(Obj, Loc): Reward = −1
c1: ClearToRight(Loc) ∧ GoodFooting(Obj, Loc)
ω1 : Obj1.x = min(2 + Obj1.x, 5)
c2: ClearToRight(Loc) ∧ WetFloor(Obj, Loc) ∧ Freez-
ing(Loc)
ω2 : Obj1.x = min(1 + Obj1.x, 5)
c3: WallToRight(Loc)
ω3 : Obj1.x = Obj1.x

Table 2. An OOMDP operator for walking right with a
limit of x = 5.

preconditions, updating each MB-CON a so no more
than |A|n traces will be needed where n is the number
of literals within the action’s scope.

The other part of the partition is learning each pa
i ,

which is done separately from the conjunction learning
with a mixture of real experience and trace tuples and

has a known KWIK bound of Õ( |A||Ω|3

ǫ4
). Thus, given

Ωa, the dynamics are MBP learnable, and thus the
domain can be PAC-MDP-Trace learned.

We note that these results generalize the findings
of Walsh et al. (2009) (which did autonomous learn-
ing of only the probabilities) and Walsh & Littman
(2008), which used an MB-like algorithm to prove the
efficiency of “Trace-Learning” deterministic STRIPS
operators. The use of a conjunction learner in this case
relies on a unique failure signal when the preconditions
of an action fail. We now investigate a different type
of relational MDP, with conditional outcomes that do
not provide this signal.

4.4. Deterministic OOMDP Operators

Object-oriented MDPs (Diuk et al., 2008) or
OOMDPs are made up of objects with attributes (e.g.
agent6.location = 15) and predicates that must be
defined in terms of these attributes (e.g. On(A,B):
A.y = B.y + 1). Actions (as in Table 2) are described
by condition-effect pairs 〈ca

i , ωa
i 〉 such that in state st,

the condition (a conjunction over the predicates) that
holds (conditions may not overlap) governs which
effect occurs. The effects themselves describe changes
to the objects’ attributes.

We now consider the problem of learning each ca
i given

the k = O(1) possible effects (ωa
1 ...ωa

k) for each action.
Notice that this case is different than the precondi-
tion learning done in the Stochastic STRIPS case be-
cause there is no longer a single failure signal for a
ca
i not matching st. Moreover, state transitions might

not always allow the learner to unambiguously deter-
mine which effect occurred. For instance, invoking the
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Figure 1. A KWIK learner (autonomous) and an MBP
learner (apprenticeship) in the Taxi Domain

MoveRight action (Table 2) when o1.x = 4, and then
observing o1.x = 5, does not tell us which of (ω1, ω2)
actually occurred, so it is not immediately clear which
ca
i , should be updated. Here we give a solution in

the apprenticeship setting using an MB k-term-DNF
learner.

Proposition 4. Deterministic OOMDP conditions
are PAC-MDP-Trace learnable if the agent is given Ωa

for each a beforehand by using Algorithm 2 and an MB
k-term-DNF learner.

Proof. The “trick” here is instead of representing the
condition that causes an effect to occur, we learn
the conditions that do not cause effect ωi, which is
c1...∨ ci−1 ∨ ci+1 ∨ ..ck. Since each cj is an arbitrarily
sized condition, we are learning a k-term-DNF for each
condition not occurring. While extra steps are needed
to to negate experience tuples and interpret the pre-
dictions, this insight gives us the desired result.

This result extends the previous (KWIK) sample com-
plexity results for autonomous OOMDPs learning,
which limited the size of each ca

i to O(1). It is an
open question as to whether this particular approach
can be extended to the stochastic setting.

5. Experiments

Our first experiment is in a simulated deterministic
“Taxi” domain (from Diuk et al. (2008)): a 5× 5 grid
world with walls, a taxi, a “passenger” and 4 possible
destination cells. The agent must learn about naviga-
tion and the conditions for picking up and dropping off
a passenger. We use the deterministic OOMDP rep-
resentation from above, but to accommodate the au-
tonomous agent both learners used conjunction learn-
ing routines (KWIK-Enumeration and MB-Con) and
effects were constructed to be unambiguous. Fig-
ure 1 shows MBP-Agent (using MB-Con) with ap-
prenticeship learning reaching optimal behavior ahead
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Figure 2. Autonomous learners and apprenticeship learn-
ers in a noisy 3-blocks world. Traces were given after each
episode and the results were averaged over 30 trials.

of the current state-of-the-art autonomous approach,
DOORMAX (Diuk et al., 2008), a KWIK-based algo-
rithm. Here, and in the later robot version, traces were
provided at the end of each episode if the agent’s pol-
icy was worse than the teacher’s. Each trial in Figure
1 used 4 to 7 such traces.

Next, we consider a Stochastic STRIPS noisy-blocks
world from Table 1. There are also two “extra”
pickup/putdown actions that do nothing with prob-
ability 0.8. Figure 2 shows 4 agents in a 3-blocks ver-
sion of this domain. The MBP-Agent with an opti-
mal teacher learns the preconditions and to avoid the
extra actions from a single trace. The MBP-Agent
with a suboptimal teacher (who uses the extra actions
50% of the time) eventually learns the probabilities
and performs optimally in spite of its teacher. Both
MBP agents efficiently learn the preconditions. In con-
trast, a KWIK learner given the preconditions mirrors
the suboptimal-trace learner, and a KWIK learner for
both the preconditions and probabilities requires an in-
ordinate amount of exploration to execute the actions
correctly. We recorded similar results with 4-blocks
although 2 optimal traces are needed.

Our last experiment was a version of the taxi
environment above, but now on a physical Lego
MindstormsTM robot. A human demonstrated traces
by controlling the robot directly. Unlike the simulated
version, the real-world transitions are stochastic (due
to noise). So in this experiment, the robot was given all
the conditions it might encounter and had to learn the
effects and probabilities of the actions. We provided
traces after each episode until it completed the task
twice on its own from random start states. We ran
this experiment in two different settings: one where
the dynamics of the environment’s borders (physical
walls) were given, and one where the robot had to learn
about behavior near walls. The first setting contained
6 condition settings and required 5 traces and a total
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of 159 learning steps. In the harder setting, there were
60 conditions to learn and the agent required 10 traces
and 516 learning steps. This experiment demonstrates
the realizability and robustness of our apprenticeship-
learning protocol in real world environments with sen-
sor imprecision and stochasticity.

6. Related Work and Conclusions

A number of different protocols and complexity mea-
sures have been described for apprenticeship learning
in RL. The one used in this paper is an extension of
the interaction described by Abbeel & Ng (2005) with
the change that teachers no longer have to give all of
their traces up front. This feature, along with the de-
scription of a large class of transition functions learn-
able under the apprenticeship paradigm, separates our
work from previous efforts to train robots starting from
traces (Smart & Kaelbling, 2002) and other systems
for learning from demonstration (Chernova & Veloso,
2009), though the use of learned models in the lat-
ter is similar to ours. The field of Inverse Reinforce-
ment Learning (Abbeel & Ng, 2004), also sometimes
called apprenticeship learning, attempts to learn an
agent’s reward function by observing a sequence of
actions (not rewards) taken by a teacher. In con-
trast to this interaction, our learners actually see sam-
ples of the transitions and rewards collected by the
teacher and use this “experience” in a traditional
model-based RL fashion. Recent work in Imitation
Learning (Ratliff et al., 2006) took MDP instances
and trajectories and tried to generalize these behav-
iors based on assumptions about the linearity of costs
with respect to the feature space. Work on policy
cloning (Khardon, 1999) used a protocol close to ours
for observing traces, though the goal (learning a par-
ticular policy) was different.

In this work, we have extended the previous protocol
for apprenticeship learning, defined a measure of sam-
ple complexity for this interaction (PAC-MDP-Trace),
and shown that two large and widely studied classes
of models (KWIK and MB and a combination of the
two) are sufficient for PAC-MDP-Trace learning. We
have shown how to use these findings constructively to
learn and act in RL environments that were otherwise
intractable, including two forms of relational MDPs.
We have also provided empirical evidence in two simu-
lated domains and a demonstration of efficient appren-
ticeship learning on a real robot.
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