Carlos Greg Diuk-Wasser, Ph.D. Research Scientist |
|||||||||||||||
ABOUT ME EDUCATION PUBLICATIONS TEACHING | |||||||||||||||
ABOUT ME | |||||||||||||||
I'm a Research Scientist in Computational Social Science within the Central Social Impact team at Meta, doing quantitative research to understand people's online behavior in the context of a large-scale social network. Full CV and Google Scholar profile. |
|||||||||||||||
EDUCATION AND PRIOR RESEARCH | |||||||||||||||
Postdoctoral Research Fellow, Princeton University (2009-2013) Labs: Yael Niv, Matt Botvinick. Studied the neural bases of hierarchical behavior in humans. Ph.D. in Computer Science, Rutgers University (2009). Advisor: Michael Littman. Thesis: "An object-oriented representation for efficient reinforcement learning". pdf Licenciatura in Computer Science, University of Buenos Aires (2003). |
|||||||||||||||
DATA SCIENCE | |||||||||||||||
Some of the work I do at Facebook takes the form of blog posts:
Other:
|
|||||||||||||||
PUBLICATIONS | |||||||||||||||
Also check my Google Scholar profile. Peer-reviewed Publications:2021. “Social Catalysts: Characterizing People Who Spark Conversations Among Others”, Martin Saveski, Farshad Kooti, Sylvia Morelli Vitousek, Carlos Diuk, Bryce Bartlett, Lada A Adamic. Proceedings of the ACM on Human-Computer Interaction. CSCW 2021. pdf 2014. “Optimal Behavioral Hierarchy”, Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G. Barto, Yael Niv, Matthew M. Botvinick. PLOS Computational Biology. link 2014. “Parsing heuristic and forward search in first-graders game-play behavior”, Luciano Paz, Andrea Goldin, Carlos Diuk and Mariano Sigman. Cognitive Science. link 2013. “Divide and conquer: hierarchical reinforcement learning and task decomposition in humans.”, Carlos Diuk, Anna Schapiro, Natalia Córdova, José Ribas-Fernandes, Yael Niv and Matthew M. Botvinick. In Computational and Robotic Models of the Hierarchical Organization of Behavior. Edited by Baldassare G and Mirolli M. Springer Verlag.link 2013. “Hierarchical Learning Induces Two Simultaneous, But Separable, Prediction Errors in Human Basal Ganglia”, Carlos Diuk, Karin Tsai, Jonathan Wallis, Matthew M. Botvinick and Yael Niv. The Journal of Neuroscience. link 2012. “A quantitative philology of introspection”, Carlos Diuk, Diego F. Slezak, Iván Raskovsky, Mariano Sigman and Guillermo Cecchi. Frontiers in Integrative Neuroscience. link 2011. “A Neural Signature of Hierarchical Reinforcement Learning”, José J.F. Ribas-Fernandes, Alec Solway, Carlos Diuk, Joseph T. McGuire, Andrew G. Barto, Yael Niv and Matthew M. Botvinick. Neuron, Volume 71, Issue 2, 370-379. abstract 2010. PhD Thesis: "An object-oriented representation for efficient reinforcement learning". pdf 2010. “Generalizing Apprenticeship Learning across Hypothesis Classes”, Thomas J. Walsh, Kaushik Subramanian, Michael L. Littman and Carlos Diuk. ICML 2010. pdf 2009. “The Adaptive k-Meteorologists Problem and Its Application to Structure Learning and Feature Selection in Reinforcement Learning”, Carlos Diuk, Lihong Li and Bethany Leffler. ICML 2009. pdf / videolecture 2009. “Exploring Compact Reinforcement-Learning Representations with Linear Regression”, Thomas J. Walsh, István Szita, Carlos Diuk, and Michael L. Littman. UAI 2009. pdf 2008. “An Object-Oriented Representation for Efficient Reinforcement Learning”, Carlos Diuk, Andre Cohen and Michael L. Littman. ICML 2008. pdf / videolecture 2008. “Hierarchical Reinforcement Learning”, Carlos Diuk and Michael Littman. Encyclopedia of Artificial Intelligence, IGI Global, July 2008. 2007. “Efficient Structure Learning in Factored-state MDPs”, Alexander L. Strehl, Carlos Diuk and Michael L. Littman. AAAI 2007.pdf 2007. “An adaptive anomaly detector for worm detection ”, John Mark Agosta, Carlos Diuk, Jaideep Chandrashekar and Carl Livadas. Second Workshop on Tackling Computer Systems Problems with Machine Learning Techniques (sysML-07). pdf 2006. “A Hierarchical Approach to Efficient Reinforcement Learning in Deterministic Domains”, Carlos Diuk, Alexander L. Strehl and Michael L. Littman. AAMAS’06. pdf 2003. “Una herramienta computacional para la reconstrucción de genealogías históricas.”, Carlos Diuk. Licenciatura Dissertation. Dept. of Computer Science, Universidad de Buenos Aires. pdf 2002. “Computer tools for reconstructing a genealogy”, Carlos Diuk and Enrique Tándeter. International Journal of History and Computing. Edinburgh University Press. pdf Other publications and talks:2013. “Compositional policy priors”, Wingate, David; Diuk, Carlos; O'Donnell, Timothy; Tenenbaum, Joshua; Gershman, Samuel. Technical Report 2013-007. MIT CSAIL. link 2010. “Hierarchical Reinforcement Learning: An fMRI Study of learning in a two-level gambling task ”, Carlos Diuk, Matthew Botvinick, Andrew Barto and Yael Niv. Society for Neuroscience Meeting 2010 (SfN 2010). pdf 2010. “The emergence of the modern concept of introspection: a quantitative linguistic analysis”, Ivan Raskovsky, Diego Fernández Slezak, Carlos Diuk and Guillermo Cecchi. NAACL Young Investigators Workshop 2010. pdf 2006. Invited Speaker at AAMAS Hierarchical Autonomous Agents and Multi-Agent Systems: “A Hierarchical Approach to Efficient Reinforcement Learning”. 2006. “Using Classifiers to Transfer Knowledge ”, Thomas J. Walsh, Carlos Diuk and Michael Littman. Presented at the New York Academy of Science Machine Learning Symposium. 2006. “Efficient exploration and learning of structure in factored-state MDPs ”, Carlos Diuk, Michael L. Littman, Alexander L. Strehl. Presented at NIPS Workshop “Towards a New Reinforcement Learning?”. 2005. “A Hierarchical Approach to Efficient Reinforcement Learning in Factored State Spaces”, Carlos Diuk, Michael L. Littman, and Alexander L. Strehl. Presented at the the 22nd International Conference on Machine Learning (ICML 2005), Workshop on Rich Representations for Reinforcement Learning, Bonn, Germany, 2005. |
|||||||||||||||
TEACHING | |||||||||||||||
|